Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces
Delort, Jean-Marc ; Szeftel, Jérémie
Journées équations aux dérivées partielles, (2005), p. 1-13 / Harvested from Numdam

This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.

Publié le : 2005-01-01
DOI : https://doi.org/10.5802/jedp.26
Classification:  35L70,  34L20
@article{JEDP_2005____A15_0,
     author = {Delort, Jean-Marc and Szeftel, J\'er\'emie},
     title = {Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2005},
     pages = {1-13},
     doi = {10.5802/jedp.26},
     mrnumber = {2352782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2005____A15_0}
}
Delort, Jean-Marc; Szeftel, Jérémie. Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces. Journées équations aux dérivées partielles,  (2005), pp. 1-13. doi : 10.5802/jedp.26. http://gdmltest.u-ga.fr/item/JEDP_2005____A15_0/

[1] D. Bambusi: Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys. 234 (2003), no. 2, 253–285. | MR 1962462 | Zbl 1032.37051

[2] D. Bambusi and B. Grébert: Birkhoff normal form for PDEs with tame modulus, preprint (2004).

[3] J. Bourgain: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal. 6 (1996), no. 2, 201–230. | MR 1384610 | Zbl 0872.35007

[4] J.-M. Delort: Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61 | Numdam | MR 1833089 | Zbl 0990.35119

[5] J.-M. Delort and J. Szeftel: Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not. (2004), no. 37, 1897–1966. | MR 2056326 | Zbl 1079.35070

[6] J.-M. Delort and J. Szeftel: Almost orthogonality properties of products of eigenfunctions and applications to long-time existence for semi-linear Klein-Gordon equations on Zoll manifolds, preprint (2004). | MR 2056326

[7] J.-M. Delort and J. Szeftel: Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces, preprint (2004).

[8] S. Klainerman: The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics 23, (1986), 293–326. | MR 837683 | Zbl 0599.35105

[9] T. Ozawa, K. Tsutaya and Y. Tsutsumi: Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z, 222, (1996) 341–362. | MR 1400196 | Zbl 0877.35030

[10] J. Shatah: Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38, (1985) 685–696. | MR 803256 | Zbl 0597.35101