Nous montrons deux résultats d’approximation de dimension finie et une propriété « nonsqueezing » symplectique pour le flot Korteweg-de Vries (KdV) sur le cercle . Le résultat nonsqueezing dépend des résultats d’approximation mentionnés et du théorème nonsqueezing de Gromov en dimension finie. Contrairement aux travaux de Kuksin [22] qui a lancé l’étude de résultats nonsqueezing pour des systèmes hamiltoniens de dimension infinie, l’argument nonsqueezing ici ne construit pas de capacité de façon directe. De cette manière, nos résultats sont semblables à ceux obtenus pour le flot NLS par Bourgain [3]. Cependant, une difficulté majeure ici est le manque d’estimations de lissage qui nous permettraient d’approximer facilement le flot KdV de dimension infinie par un flot hamiltonien de dimension finie. Pour contourner ce problème, nous inversons la transformation de Miura et travaillons au niveau de l’équation KdV modifiée (mKdV), pour laquelle une estimation de lissage peut être obtenue.
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle . The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [14]. Unlike the work of Kuksin [22] which initiated the investigation of non-squeezing results for infinite dimensional Hamiltonian systems, the nonsqueezing argument here does not construct a capacity directly. In this way our results are similar to those obtained for the NLS flow by Bourgain [3]. A major difficulty here though is the lack of any sort of smoothing estimate which would allow us to easily approximate the infinite dimensional KdV flow by a finite-dimensional Hamiltonian flow. To resolve this problem we invert the Miura transform and work on the level of the modified KdV (mKdV) equation, for which smoothing estimates can be established.
@article{JEDP_2005____A14_0, author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, Terence}, title = {Notes on symplectic non-squeezing of the KdV flow}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2005}, pages = {1-15}, doi = {10.5802/jedp.25}, mrnumber = {2352781}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2005____A14_0} }
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Notes on symplectic non-squeezing of the KdV flow. Journées équations aux dérivées partielles, (2005), pp. 1-15. doi : 10.5802/jedp.25. http://gdmltest.u-ga.fr/item/JEDP_2005____A14_0/
[1] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II, Geometric and Funct. Anal. 3 (1993), 209-262. | MR 1215780 | Zbl 0787.35098
[2] J. Bourgain, Aspects of longtime behaviour of solutions of nonlinear Hamiltonian evolution equations, GAFA 5 (1995), 105–140. | MR 1334864 | Zbl 0879.35024
[3] J. Bourgain, Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Int. Math. Res. Notices, 1994, no. 2, (1994), 79–90. | MR 1264931 | Zbl 0818.35112
[4] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115-159. | MR 1466164 | Zbl 0891.35138
[5] J. Bourgain, Global solutions of nonlinear Schrödinger equations, AMS Publications, 1999. | MR 1691575 | Zbl 0933.35178
[6] M. Christ, J. Colliander, T. Tao, Illposedness for canonical defocussing equations below the endpoint regularity, to appear.
[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness result for KdV in Sobolev spaces of negative index, Elec. J. Diff. Eq. 2001 (2001) No 26, 1–7. | MR 1824796 | Zbl 0967.35119
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for periodic and non-periodic KdV and mKdV on and , J. Amer. Math. Soc. 16 (2003), 705–749. | MR 1969209 | Zbl 1025.35025
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Multilinear estimates for periodic KdV equations, and applications, Journ. Funct. Analy. 211 (2004), no. 1, 173–218. | MR 2054622 | Zbl 1062.35109
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, , preprint (2004).
[11] J. Colliander, G. Staffilani, H. Takaoka, Global well-posedness of the KdV equation below , Math Res. Letters 6 (1999), 755-778. | MR 1739230 | Zbl 0959.35144
[12] L. Dickey, Soliton equations and Hamiltonian systems, World Scientific, 1991. | MR 1147643 | Zbl 01843266
[13] C.S. Gardner, Korteweg-de Vries equation and generalizations IV, J. Math. Phys. 12 (1971), no. 8, 1548–1551. | MR 286402 | Zbl 0283.35021
[14] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. math., 82 (1985), 307–347. | MR 1554036 | Zbl 0592.53025
[15] H. Hofer, E. Zehnder, A new capacity for symplectic manifolds., in Analysis et cetera, Academic Press (1990), 405–428. Edited by P. Rabinowitz and E. Zehnder. | MR 1039354 | Zbl 0702.58021
[16] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Verlag, 1994. | MR 1306732 | Zbl 0805.58003
[17] T. Kappeler, P. Topalov, Global well-posedness of KdV in , preprint 2003.
[18] T. Kappeler, P. Topalov, Global fold structure of the Miura map on , IMRN 2004:39 (2004), 2039–2068. | MR 2062735 | Zbl 1076.35111
[19] C. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR 1329387 | Zbl 0848.35114
[20] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no 3, 617–633.. | MR 1813239 | Zbl 1034.35145
[21] C. Kenig, G. Ponce, L.Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. | MR 1230283 | Zbl 0787.35090
[22] S. Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE’s, CMP 167 (1995), 521–552. | MR 1316759 | Zbl 0827.35121
[23] S. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, 19, Oxford Univ. Press, 2000. | MR 1857574 | Zbl 0960.35001
[24] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156–1162. | MR 488516 | Zbl 0383.35065
[25] R. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical. Phys. 9 (1968), 1202–1204. | MR 252825 | Zbl 0283.35018
[26] P. Olver, Applications of Lie groups to differential equations, Springer, 1997. | MR 1240056 | Zbl 0588.22001
[27] A. Sjöberg, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579. | MR 410135 | Zbl 0179.43101
[28] H. Takaoka, Y. Tsutsumi, Well-posedness of the Cauchy Problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 2004, no. 56, 3009–3040. | MR 2097834 | Zbl 02135032
[29] T. Tao, Multilinear weighted convolution of functions, and applications to non-linear dispersive equations, Amer. J. Math. 123 (2001), 839–908. | MR 1854113 | Zbl 0998.42005
[30] T. Tao, Global regularity of wave maps I. Small critical Sobolev norm in high dimension, IMRN 7 (2001), 299–328. | MR 1820329 | Zbl 0983.35080
[31] T. Tao, Global regularity of wave maps II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443–544. | MR 1869874 | Zbl 1020.35046
[32] V.E. Zakharov, L.D. Faddeev, The Korteweg-de Vries equation is a completely integrable Hamiltonian System, Funkz. Anal. Priloz. 5 (1971), no. 4, 18–27. | MR 303132 | Zbl 0257.35074