We will present a unique continuation result for solutions of second order differential equations of real principal type with critical potential in (where is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its boundedness properties.
@article{JEDP_2003____A6_0, author = {Dos Santos Ferreira, David}, title = {Sharp $L^p$ Carleman estimates and unique continuation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2003}, pages = {1-12}, doi = {10.5802/jedp.620}, mrnumber = {2050592}, zbl = {02079441}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2003____A6_0} }
Dos Santos Ferreira, David. Sharp $L^p$ Carleman estimates and unique continuation. Journées équations aux dérivées partielles, (2003), pp. 1-12. doi : 10.5802/jedp.620. http://gdmltest.u-ga.fr/item/JEDP_2003____A6_0/
[1] On estimates for the wave equation, Math. Z., 145, 251-254, 1975. | MR 387819 | Zbl 0321.35052
,[2] estimates for Fourier integral operators related to hyperbolic equations, Math. Z., 152, 273-286, 1977. | MR 430872 | Zbl 0325.35009
,[3] Inégalités de Carleman pour des indices critiques et applications, PhD thesis, University of Rennes, 2002.
,[4] Strichartz estimates for non-selfadjoint operators and applications, to appear in Comm. PDE.
,[5] Sharp Carleman estimates and unique continuation, preprint.
,[6] Carleman inequalities and the Heat operator II, Indiana Univ. Math. J., 50, 3, 2001, 1149-1169. | MR 1871351 | Zbl 1029.35046
, ,[7] The analysis of linear partial differential operators IV, Springer-Verlag, 1985. | MR 781537 | Zbl 0612.35001
,[8] Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J., 1, 3, 693-726, 1990. | MR 1015129 | Zbl 0732.35118
,[10] Unique continuation and absence of positive eigenvalues for Schrödinger operators, Adv. Math., 62, 1986, 118-134. | MR 865834
, ,[11] Endpoint Strichartz estimates, Amer. J. of Math, 120, 955-980, 1998. | MR 1646048 | Zbl 0922.35028
,[12] Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients, Comm. Pure Appl. Math., 54, 3, 339-360, 2001. | MR 1809741 | Zbl 1033.35025
, ,[13] Dispersive estimates for principally normal operators and applications to unique continuation, preprint, 2003. | MR 2056851
, ,[14] Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 2, 1987, 329-347. | MR 894584 | Zbl 0644.35012
, , ,[15] A parametrix construction for wave equations with coefficients, J. Ann. Inst. Fourier, 48, 797-835, 1998. | Numdam | MR 1644105 | Zbl 0974.35068
,[16] Fourier integrals in classical analysis, Cambridge University Press, 1993. | MR 1205579 | Zbl 0783.35001
,[17] Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations, J. Amer. Soc., 2, 1989, 491-516. | MR 999662 | Zbl 0703.35027
,[18] Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. of AMS, 333, 2, 1992, 821-833. | MR 1066449 | Zbl 0763.35012
,[19] Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 1977, 705-774. | Zbl 0372.35001
,[20] The spaces and unique continuation for solutions to the semilinear wave equation, Comm. PDE, 21, 1996, 841-887. | MR 1391526 | Zbl 0853.35017
,[21] Introduction to pseudo-differential and Fourier integral operators, Plenum Press, 1980. | MR 597145 | Zbl 0453.47027
,[22] Unique continuation for | Δ u| ≤ V | ∇ u| and related problems, Rev. Mat. Iberoamericana 6, 3-4, 1990, 155-200. | MR 1125760 | Zbl 0735.35024
,[23] Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Birkhaüser, 1983. | Zbl 0521.35003
,