We obtain some microlocal estimates of the resonant states associated to a resonance of an -differential operator. More precisely, we show that the normalized resonant states are outside the set of trapped trajectories and are in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.
@article{JEDP_2003____A2_0, author = {Bony, Jean-Fran\c cois and Michel, Laurent}, title = {Microlocalization of resonant states and estimates of the residue of the scattering amplitude}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2003}, pages = {1-12}, doi = {10.5802/jedp.616}, mrnumber = {2050588}, zbl = {02079437}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2003____A2_0} }
Bony, Jean-François; Michel, Laurent. Microlocalization of resonant states and estimates of the residue of the scattering amplitude. Journées équations aux dérivées partielles, (2003), pp. 1-12. doi : 10.5802/jedp.616. http://gdmltest.u-ga.fr/item/JEDP_2003____A2_0/
[20] Foundations of mechanics, Second edition, Advanced Book Program, Benjamin/Cummings Publishing, 1978. | MR 515141 | Zbl 0393.70001
and ,[21] Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), no. 4, 677-735. | MR 1914456 | Zbl 1013.35019
,[22] Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. | MR 1735654 | Zbl 0926.35002
and ,[23] Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 1, 31-82. | Numdam | MR 1635811 | Zbl 0916.34071
and ,[24] Breit-Wigner formula at barrier tops, preprint (2002). | MR 1972758
and ,[25] Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 1, 81-110. | Numdam | MR 1029851 | Zbl 0711.35097
and ,[26] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391-421. | MR 874901 | Zbl 0637.35027
and ,[27] Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25. | Numdam | MR 871788 | Zbl 0631.35075
and ,[28] Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ Tokyo 35 (1985), no. 1, 81-107. | MR 847881 | Zbl 0615.35065
and ,[29] Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), no. 1, 1-21. | MR 1764337 | Zbl 0955.35009
and ,[30] Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 3, 303-338. | Numdam | MR 1714347 | Zbl 0944.35060
,[31] Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13-38. | MR 1697827 | Zbl 0931.35119
and ,[32] An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, 2002. | MR 1872698 | Zbl 0994.35003
,[33] Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy, Can. J. Math., to appear. | MR 2074047 | Zbl 1084.35067
,[34] Semi-classical estimate of the residue of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393. | MR 1984509 | Zbl 02072849
,[35] Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), no. 4, 675-711. | MR 1852923 | Zbl 1041.81041
and ,[36] Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166. | MR 699623 | Zbl 0524.35007
,[37] Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Springer, Berlin, 1987, pp. 402-429. | MR 897789 | Zbl 0627.35074
,[38] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. | MR 1115789 | Zbl 0752.35046
and ,[39] Estimates on the residue of the scattering amplitude, Asympt. Anal. 32 (2002), no. 3,4, 317-333. | MR 1993653 | Zbl 1060.35097
,[40] Sharp upper bounds on the number of resonances near the real axis for trapped systems, Amer. J. Math., 125 (2003), no. 1, 183-224. | MR 1953522 | Zbl 1040.35055
,[41] From quasimodes to resonances, Math. Res. Lett. 5 (1998), no. 3, 261-272. | MR 1637824 | Zbl 0913.35101
and ,