We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example : the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.
@article{JEDP_2003____A11_0, author = {Mattingly, Jonathan}, title = {On recent progress for the stochastic Navier Stokes equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2003}, pages = {1-52}, doi = {10.5802/jedp.625}, mrnumber = {2050597}, zbl = {02079446}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2003____A11_0} }
Mattingly, Jonathan. On recent progress for the stochastic Navier Stokes equations. Journées équations aux dérivées partielles, (2003), pp. 1-52. doi : 10.5802/jedp.625. http://gdmltest.u-ga.fr/item/JEDP_2003____A11_0/
[Arn98] Random dynamical systems. Springer-Verlag, Berlin,1998 | MR 1723992 | Zbl 0906.34001 | Zbl 0834.58026
[AS03] Navier-stokes equation controlled by degenerate forcing: Controllabillity in finite-dimentional projections. Preprint, 2003. | MR 2082964
.[Bak02] Existence and uniqueness of stationary solution of %nonlinear stochastic differential equation with memory. Theory Probab. Appl, 47(4):764-769, 2002. | MR 2001790 | Zbl 1054.60062
.[Bax91] Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms. In Spatial stochastic processes, volume 19 of Progress in Probability, pages 189-218. Birkhäuser Boston, Boston, MA, 1991. | MR 1144097 | Zbl 0744.60063
.[Bel95] Degenerate stochastic differential equations and hypoellipticity. Longman, Harlow, 1995. | MR 1471702 | Zbl 0859.60051
.[BKL00] Probabilistic estimates for the two-dimensional stochastic Navier-Stokes equations.J. Statist. Phys., 100(3-4):743-756, 2000. | MR 1788483 | Zbl 0972.60044
.[BKL01] Ergodicity of the 2D Navier-Stokes equations with random forcing. Comm. Math. Phys., 224(1):65-81, 2001. Dedicated to Joel L. Lebowitz. | MR 1868991 | Zbl 0994.60066
.[BKL02] Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Comm. Math. Phys., 230(1):87-132, 2002. | MR 1930573 | Zbl 1033.76011
.[BM03] Stationary solutions of stochastic differential equation with memory and stochastic partial differential equations. Preprint, 2003. | Zbl 1098.34063
.[CDF97] Random attractors. J. Dynam. Differential Equations, 9(2):307-341, 1997. | MR 1451294 | Zbl 0884.58064
.[Cer99] Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients. Stochastics Stochastics Rep., 67(1-2):17-51, 1999. | MR 1717811 | Zbl 0935.60049
.[CF88] Navier-Stokes Equations. University of Chicago Press, Chicago, 1988. | MR 972259 | Zbl 0687.35071
.[CFNT89] Integral manifolds and inertial manifolds for dissipative partial differential equations, volume 70 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin, 1989. | MR 966192 | Zbl 0683.58002
.[CFS82] Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York-Berlins, 1982. | MR 832433 | Zbl 0493.28007
.[CK97] Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl., 15(5):671-699, 1997. | MR 1478880 | Zbl 0899.60056
.[DG95] Applied analysis of the Navier-Stokes equations}. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. | MR 1325465 | Zbl 0838.76016
.[DLJ88] The statistical equilibrium of an isotropic stochastic flow with negative Lyapounov exponents is trivial. In Séminaire de Probabilités, XXII, volume 1321 of Lecture Notes in Math., pages 175-185. Springer, Berlins, 1988. | Numdam | MR 960525 | Zbl 0647.60076
.[DPZ92] Stochastic Equations in Infinite Dimensions. Cambridge, 1992. | MR 1207136 | Zbl 0761.60052
.[DPZ96] Ergodicity for Infinite Dimensional Systems. Cambridge, 1996.
.[DPZ02] Second order partial differential equations in Hilbert spaces, volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. | MR 1985790 | Zbl 1012.35001
.[DT95] Exponential decay rate of the power spectrum for solutions of the Navier-Stokes equations. Phys. Fluids, 7(6):1384-1390, 1995. | MR 1331063 | Zbl 1023.76513
.[Dud76] Probabilities and metrics. Matematisk Institut, Aarhus Universitet, Aarhus, 1976. Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45. | MR 488202 | Zbl 0355.60004
.[EFNT94] Exponential Attractors for dissipative Evolution equations. Research in Applied Mathematics. John Wiley and Sons and Masson, 1994. | MR 1335230 | Zbl 0842.58056
.[EH01] Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys., 219(3):523-565, 2001. | MR 1838749 | Zbl 0983.60058
.[EKMS00] Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2), 151(3):877-960, 2000. | MR 1779561 | Zbl 0972.35196
.[EL02] Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Statist. Phys., 108(5/6):1125-1156, 2002. | MR 1933448 | Zbl 1023.60057
.[EM01] Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation. Comm. Pure Appl. Math., 54(11):1386-1402, 2001. | MR 1846802 | Zbl 1024.76012
.[EMS01] Gibbsian dynamics and ergodicity for the stochastic forced navier-stokes equation. Comm. Math. Phys., 224(1), 2001. | MR 1868992 | Zbl 0994.60065
.[EVE00] Generalized flows, intrinsic stochasticity, and turbulent transport. Proc. Natl. Acad. Sci. USA, 97(15):8200-8205 (electronic), 2000. | MR 1771642 | Zbl 0967.76038
.[Fer97] Ergodic results for stochastic Navier-Stokes equation. Stochastics and Stochastics Reports, 60(3-4):271-288, 1997. | MR 1467721 | Zbl 0882.60059
.[FG98] Kolmogorov equation associated to a stochastic Navier-Stokes equation. J. Funct. Anal., 160(1):312-336, 1998. | MR 1658680 | Zbl 0928.60044
.[Fla94] Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1:403-426, 1994. | MR 1300150 | Zbl 0820.35108
.[FM95] Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. in Math. Phys., 171:119-141, 1995. | MR 1346374 | Zbl 0845.35080
.[FP67] Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 39:1-34, 1967. | Numdam | MR 223716 | Zbl 0176.54103
.[FST88] Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations, 73(2):309-353s, 1988. | MR 943945 | Zbl 0643.58004
.[FT89] Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359-369, 1989. | MR 1026858 | Zbl 0702.35203
.[Hai02] Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields, 124(3):345-380, 2002. | MR 1939651 | Zbl 1032.60056
.[Jur97] Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. | MR 1425878 | Zbl 0940.93005
.[Kif86] Ergodic theory of random transformations. Birkhäuser Boston Inc., Boston, MAs, 1986. | MR 884892 | Zbl 0604.28014
.[KPS02] A coupling approach to randomly forced nonlinear PDEs. II. Comm. Math. Phys., 230(1):81-85, 2002. | MR 1927233 | Zbl 1010.60066
.[KS00] Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys., 213(2):291-330, 2000. | MR 1785459 | Zbl 0974.60046
.[KS02] Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9), 81(6):567-602, 2002. | MR 1912412 | Zbl 1021.37044
.[Kuk03] Eulerian limit for 2d statistical hydrodynamics. Preprint, 2003. | MR 2070104
.[KS84] Applications of the Malliavin calculus. I. In Stochastic analysis (Katata/Kyoto, 1982), spages 271-306. North-Holland, Amsterdam, 1984. | MR 780762 | Zbl 0546.60056
.[LJ87] Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist., 23(1):111-120, 1987. | Numdam | MR 877387 | Zbl 0614.60047
.[LO97] Analyticity of solutions for a generalized Euler equation. J. Differential Equations, 133(2):321-339, 1997. | MR 1427856 | Zbl 0876.35090
.[Mat98] The Stochastically forced Navier-Stokes equations: energy estimates and phase space contraction}. PhD thesis, Princeton University, 1998.
.[Mat99] Ergodicity of D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys., 206(2):273-288, 1999. | MR 1722141 | Zbl 0953.37023
.[Mat02a] Contractivity and ergodicity of the random map . Theory of Probability and its Applications, 47(2):388-397, 2002. | MR 2003207 | Zbl 1032.60064
.[Mat02b] The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity. J. Statist. Phys., 108(5-6):1157-1179, 2002. | MR 1933449 | Zbl 1030.60049
.[Mat02c] Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys., 230(3):421-462, 2002. | MR 1937652 | Zbl 1054.76020
.[MP03] Malliavin calculus and the randomly forced Navier Stokes equation. Preprint, 2003.
.[MR] Stochastic navier-stokes equations for turbulent flows. Preprint. | MR 2050201
.[MS99] An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations. Commun. Contemp. Math., 1(4):497-516, 1999. | MR 1719695 | Zbl 0961.35112
.[MS03] The small scales of the stochastic navier stokes equations under rough forcing. Preprint, 2003.
.[MSH02] Ergodicity for SDEs and approximations: Locally lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101, no. 2, 185-232, 2002. | MR 1931266 | Zbl 1075.60072
.[MT93] Markov Chains and Stochastic Stability. Springer-Verlag, 1993. | MR 1287609 | Zbl 0925.60001
.[MY02] Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys., 227(3):461-481, 2002. | MR 1910827 | Zbl 1009.37049
.[Nor86] Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85, pages 101-130. Springer, Berlin,s 1986. | Numdam | MR 942019 | Zbl 0609.60066
.[Oks92] Stochastic Differential Equations. Springer-Verlag, 3nd edition, 1992. | MR 1217084 | Zbl 0747.60052
.[OT00] Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in . J. Funct. Anal., 172(1):1-18, 2000. | MR 1749867 | Zbl 0960.35081
.[Rom02] Ergodicity of the finite dimensional approximation of the 3d navier-stokes equations forced by a degenerate. Peprint, 2002.
.[RY94] Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1994. | MR 1303781 | Zbl 0731.60002
.[Sch97] Qualitative properties for the stochastic Navier-Stokes equation. Nonlinear Anal., 28(9):1545-1563, 1997. | MR 1431206 | Zbl 0882.60058
.[Shi02] A version of the law of large number and applications. In Probabilistic Methods in Fluids. World Scientific, 2002. | MR 2083377 | Zbl 1066.76020
.[Sin94] Topics in ergodic theory, volume 44 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1994. | MR 1258087 | Zbl 0805.58005
.[Tem95] Navier-Stokes equations and nonlinear functional analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995. | MR 1318914 | Zbl 0833.35110
.[VF88] Mathematical Problems of Statistical Hydrodynamics. Kluwer Academic Publishers, 1988. Updated version of Russian original of same name. | Zbl 0688.35077
.