Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis Lions, with Kenji Nakanishi and with Fabrice Planchon.
@article{JEDP_2003____A10_0, author = {Masmoudi, Nader}, title = {Uniqueness results for some PDEs}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2003}, pages = {1-13}, doi = {10.5802/jedp.624}, mrnumber = {2050596}, zbl = {02079445}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2003____A10_0} }
Masmoudi, Nader. Uniqueness results for some PDEs. Journées équations aux dérivées partielles, (2003), pp. 1-13. doi : 10.5802/jedp.624. http://gdmltest.u-ga.fr/item/JEDP_2003____A10_0/
[1] Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693-720. | MR 1391520 | Zbl 0880.35116
,[2] Local existence of energy class solutions for the Dirac-Klein-Gordon equations. Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167-1193. | MR 1697486 | Zbl 0931.35134
[3] The Cauchy problem for the critical nonlinear Schrödinger equation in . Nonlinear Anal. 14 (1990), no. 10, 807-836. | MR 1055532 | Zbl 0706.35127
and ,[4] Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel. Journal d'Analyse Mathématique, 77(?):27-50, 1999. | MR 1753481 | Zbl 0938.35125
.[5] Principles of Quantum Mechanics, Oxford University Press, 4th ed., London (1958) | Zbl 0080.22005
,[6] Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equations in , to appear in Commun. Contemp. Math., 2001 | MR 1992354 | Zbl 1050.35102
, and .[7] Sur l’unicité dans des solutions ”mild” des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 325(12):1253-1256, 1997. | MR 1490408 | Zbl 0894.35083
, , and .[8] Unicité dans et d’autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana, 3 (2000) 605-667. | MR 1813331 | Zbl 0970.35101
, , and .[9] Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2), 132, 1990, 3, 485-509. | MR 1078267 | Zbl 0736.35067
,[10] Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen. (German) Math. Z. 77 1961 295-308. | MR 130462 | Zbl 0111.09105
,[11] Strong -solutions of the Navier-Stokes equation in , with applications to weak solutions., Math. Z. 187 (1984), no. 4, 471-480. | MR 760047 | Zbl 0545.35073
,[12] On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness, J. Anal. Math., 67, 1995, 281-306, | MR 1383498 | Zbl 0848.35124
.[13] On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1994), no. 1, 19-44. | MR 1271462 | Zbl 0818.35123
and ,[14] Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. | MR 1231427 | Zbl 0803.35095
and ,[15] Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl., 12:1-82, 1933. | JFM 59.0402.01 | Zbl 0006.16702
.[16] Unicité des solutions faibles de Navier-Stokes dans . C. R. Acad. Sci. Paris Sér. I Math., 327(5):491-496, 1998. | MR 1652574 | Zbl 0990.35114
and .[17] Uniqueness of mild solutions of the Navier-Stokes system in . Comm. Partial Differential Equations. 26 (2001), no. 11-12, 2211-2226. | MR 1876415 | Zbl 01717449
and .[18] Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, to appear in Comm. Math. Physics, 2003. | MR 2020223 | Zbl 1029.35199
and ,[19] On Uniqueness for the critical wave equation, preprint, 2003.
and ,[20] On Uniqueness for wave maps, preprint, 2003. | MR 1992026
and ,[21] Uniqueness of mild solutions of the Navier-Stokes equation and maximal -regularity. C. R. Acad. Sci. Paris Sér. I Math., 328(8):663-668, 1999. | MR 1680809 | Zbl 0931.35127
.[22] On the well-posedness of the Wave Map problem in high dimensions. preprint, 2001. | MR 2016196 | Zbl 1085.58022
, and .[23] The nonrelativistic limit of the nonlinear Dirac equation, Ann. Inst. Henri Poincaré, Anal. Non Lineaire 9 (1992) 3-12 | Numdam | MR 1151464 | Zbl 0746.35036
,[24] n uniqueness for semilinear wave equations, to appear in Math. Zeit.. 2001 | MR 1992026 | Zbl 1023.35079
, O[25] The Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979), pp. 335-364, Res. Notes in Math., 53, Pitman, Boston, Mass.-London, 1981. | MR 631403 | Zbl 0473.35055
,[26] Regularity results for nonlinear wave equations. Ann. of Math. (2), 138(3):503-518, 1993. | MR 1247991 | Zbl 0836.35096
and .[27] Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices, (7):303ff., approx. 7 pp. (electronic), 1994. | MR 1283026 | Zbl 0830.35086
and .[28] The Cauchy problem for wave maps. Int. Math. Res. Not., (11):555-571, 2002. | MR 1890048 | Zbl 1024.58014
and .[20] Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality, Comm. Pure Appl. Math., 52 n 9, 1999, 1179-1188 | MR 1692140 | Zbl 0933.35141
.[21] Uniqueness of generalized solutions to nonlinear wave equations. Amer. J. Math. 122 (2000), no. 5, 939-965. | MR 1781926 | Zbl 0961.35084