Perturbations of the harmonic map equation
Kappeler, Thomas
Journées équations aux dérivées partielles, (2002), p. 1-9 / Harvested from Numdam

We consider perturbations of the harmonic map equation in the case where the source and target manifolds are closed riemannian manifolds and the latter is in addition of nonpositive sectional curvature. For any semilinear and, under some extra conditions, quasilinear perturbation, the space of classical solutions within a homotopy class is proved to be compact. For generic perturbations the set of solutions is finite and we present a count of this set. An important ingredient for our analysis is a new inequality for maps in a given homotopy class which can be viewed as a version of the Poincaré inequality for such maps.

Publié le : 2002-01-01
DOI : https://doi.org/10.5802/jedp.607
@article{JEDP_2002____A9_0,
     author = {Kappeler, Thomas},
     title = {Perturbations of the harmonic map equation},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2002},
     pages = {1-9},
     doi = {10.5802/jedp.607},
     mrnumber = {1968205},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2002____A9_0}
}
Kappeler, Thomas. Perturbations of the harmonic map equation. Journées équations aux dérivées partielles,  (2002), pp. 1-9. doi : 10.5802/jedp.607. http://gdmltest.u-ga.fr/item/JEDP_2002____A9_0/

[BGS] W. Ballmann, M. Gromov, V. Schroeder: Manifolds of nonpositive curvature. Birkhäuser, Basel - Boston, 1985. | MR 823981 | Zbl 0591.53001

[BH] M. Bridson, A. Haefliger: Metric spaces of non-positive curvature. Springer, Berlin - New York, 1999. | MR 1744486 | Zbl 0988.53001

[CMS] K. Cieliebak, I. Mundet I Riera, D. Salamon: Equivariant moduli problems, branched manifolds and the Euler class. ETHZ preprint, 2001. | MR 1953244

[CS] C. Croke, V. Schroeder: The fundamental group of compact manifolds without conjugate points. Comment. Math. Helv. 61 (1986), 161 - 175. | MR 847526 | Zbl 0608.53038

[ES] J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), p. 109 - 160. | MR 164306 | Zbl 0122.40102

[Gr] M. Gromov: Pseudo-holomorphic curves on almost complex manifolds. Invent. Math. 82 (1985), p. 307 - 347. | Zbl 0592.53025

[Ha] P. Hartman: On homotopic harmonic maps. Can. J. Math. 19 (1967), p. 673 - 687. | MR 214004 | Zbl 0148.42404

[KKS1] T. Kappeler, S. Kuksin, V. Schroeder: Perturbations of the harmonic map equation. Preprint Series, Insitute of Mathematics, University of Zurich, 2001. | MR 2003212

[KKS2] T. Kappeler, S. Kuksin, V. Schroeder: Poincaré inequality for maps to closed manifolds of negative sectional curvature. In preparation.

[KL] T. Kappeler, J. Latschev: Counting solutions of perturbed harmonic map equations. In preparation.

[Ku] S. Kuksin: On double-periodic solutions of quasilinear Cauchy-Riemann equations. CPAM 49 (1996), p. 639 - 676. | MR 1387189 | Zbl 0855.58048

[Sm] S. Smale: An infinite dimensional version of Sard's theorem. Amer. J. Math. 87 (1965), p. 861 - 866. IX-8 | MR 185604 | Zbl 0143.35301

[SY] R. Schoen, S.T. Yau: Compact group actions and the topology of manifolds with non-positive curvature. Topology 18 (1979) | MR 551017 | Zbl 0424.58012