We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications
@article{JEDP_2002____A8_0, author = {H\'erau, Fr\'ed\'eric}, title = {Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2002}, pages = {1-13}, doi = {10.5802/jedp.606}, mrnumber = {1968204}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2002____A8_0} }
Hérau, Frédéric. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Journées équations aux dérivées partielles, (2002), pp. 1-13. doi : 10.5802/jedp.606. http://gdmltest.u-ga.fr/item/JEDP_2002____A8_0/
[1] On long time asymptotics of the Vlasov-FokkerPlanck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential and Integral Equations, 8(3):487- 514, 1995. | MR 1306570 | Zbl 0830.35129
and .[2] On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1-42, 2001. | MR 1787105 | Zbl 1029.82032
and .[3] Linear operators. Part I. John Wiley & Sons Inc., New York, 1988. | Zbl 0635.47001
and .[4] Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys., 212(1):105-164, 2000. | MR 1764365 | Zbl 1044.82008
and .[5] Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201(3):657-697, 1999. | MR 1685893 | Zbl 0932.60103
, , and .[6] Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lect. Notes in Mathematics. Springer-Verlag, Berlin, 1988. | MR 960278 | Zbl 0647.35002
.[7] Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble), 38(2):95-112, 1988. | Numdam | MR 949012 | Zbl 0638.47047
and .[8] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal., 138(1):40-81, 1996. | MR 1391630 | Zbl 0851.58046
and .[9] Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. | MR 897103 | Zbl 0568.35003
and .[10] Puits multiples en mécanique semi-classique. IV.étude du complexe de Witten. Comm. Partial Differential Equations, 10(3):245-340, 1985. | MR 780068 | Zbl 0597.35024
and .[11]
and . work in preparation.[12] Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. preprint University of Rennes 1, 2002. VIII-11
and .[13] Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. | MR 222474 | Zbl 0156.10701
.[14] Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z., 219(3):413-449, 1995. | MR 1339714 | Zbl 0829.35150
.[15] On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb's inequality. Integral Equations Operator Theory, 36(3):288-324, 2000. | MR 1753421 | Zbl 1023.58012
.[16] Lectures on degenerate elliptic problems. In Pseudodifferential operator with applications (CIME 1977), pages 89-151. Liguori, Naples, 1978. | MR 660652 | Zbl 0448.35046
.[17] Équations aux dérivées partielles sur les groupes de Lie nilpotents. In Bourbaki Seminar, Vol. 1981/1982, pages 75-99. Soc. Math. France, Paris, 1982. | Numdam | MR 689527 | Zbl 0497.22011
.[18] Systèmes sous-elliptiques. In Séminaire sur les équations aux dérivées partielles 1986-1987, pages Exp. No. V, 14. École Polytech., Palaiseau, 1987. | Numdam | MR 920023 | Zbl 0635.35086
.[19] Systèmes sous-elliptiques. II. Invent. Math., 104(2), 1991. | MR 1098615 | Zbl 0771.35086
.[20] Methods of Modern Mathematical Physics, volume 2. Acad. Press, 1975. | MR 751959 | Zbl 0308.47002
and .[21] Asymptotic Behavior of Thermal Nonequilibrium Steady States for a Driven Chain of Anharmonic Oscillators. Comm. Math. Phys., 215:1-24, 2000. | MR 1799873 | Zbl 1017.82028
and .[22] Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics. Comm. Math. Phys., 225:305-329, 2000. | MR 1889227 | Zbl 0989.82023
and .[23] Fluctuations of the Entropy Production in Anharmonic Chains. preprint 2002. | MR 1915300
and .[24] The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989. Methods of solution and applications. | MR 987631 | Zbl 0665.60084
.[25] Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3-4):247-320, 1976. | MR 436223 | Zbl 0346.35030
and .[26] Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations. In C. Soize R. Bouc, editor, Progress in Stochastic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., pages 139-169, 1999
.