Limites hydrodynamiques pour les équations de Vlasov-Stokes
Goudon, Thierry ; Jabin, Pierre-Emmanuel ; Vasseur, Alexis
Journées équations aux dérivées partielles, (2002), p. 1-16 / Harvested from Numdam

On présente quelques problèmes et résultats de type limites hydrodynamiques pour des modèles couplés fluide/cinétique décrivant l'interaction de particules avec un fluide en mouvement.

Publié le : 2002-01-01
DOI : https://doi.org/10.5802/jedp.605
@article{JEDP_2002____A7_0,
     author = {Goudon, Thierry and Jabin, Pierre-Emmanuel and Vasseur, Alexis},
     title = {Limites hydrodynamiques pour les \'equations de Vlasov-Stokes},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2002},
     pages = {1-16},
     doi = {10.5802/jedp.605},
     mrnumber = {1968203},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/JEDP_2002____A7_0}
}
Goudon, Thierry; Jabin, Pierre-Emmanuel; Vasseur, Alexis. Limites hydrodynamiques pour les équations de Vlasov-Stokes. Journées équations aux dérivées partielles,  (2002), pp. 1-16. doi : 10.5802/jedp.605. http://gdmltest.u-ga.fr/item/JEDP_2002____A7_0/

[1] Berthonnaud P. Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés, C. R. Acad. Sci., 331 (2000) 651-654. | MR 1799106 | Zbl 0965.35136

[2] Brenier, Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000) 737-754. | MR 1748352 | Zbl 0970.35110

[3] Caflisch R., Papanicolaou G., Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983) 885-906. | MR 709743 | Zbl 0543.76133

[4] Clouet J.F., Domelevo K., Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow, Math. Models Methods Appl. Sci., 7 (1997) 239-263. | MR 1440608 | Zbl 0868.60054

[5] Desvillettes L., About the modelling of complex flows by gas-particle methods, Preprint CMLA, 2001.

[6] Diperna R., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989) 511-547. VII-14 | MR 1022305 | Zbl 0696.34049

[7] Domelevo K., Roquejoffre J. M., Existence and stability of traveling wave solutions in a kinetic model of two-phase flows, Comm. PDE, 24 (1999) 61-108. | MR 1671989 | Zbl 0922.35132

[8] Domelevo K., Vignal M.-H., Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels, C. R. Acad. Sci., 332 (2001) 863-868. | MR 1836101 | Zbl 1067.76090

[9] Dumas, Golse F., Homogenization of transport equations, SIAM J. Appl. Math., 60 (2000) 1447-1470. | MR 1760042 | Zbl 0964.35016

[10] Gilbard, Trudinger N., Elliptic PDE of second order, (Springer, 1983). | Zbl 0562.35001

[11] Golse F., Levermore C. D., Saint-Raymond L., La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques Séminaire Equations aux Dérivées Partielles, 1999-2000, Exp. No. XIX, Ecole Polytechnique, Palaiseau, 2000. | Numdam | MR 1813181 | Zbl 02124215

[12] Goudon T., Asymptotic problems for a kinetic model of two-phase flow, Proc. Royal Soc. Edimburgh, 131, (2001) 1371-1384. | MR 1869641 | Zbl 0992.35017

[13] Hamdache K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Industrial and Appl. Math., 15 (1998) 51-74. | MR 1610309

[14] Hamdache K., Umpublished work, Personal Communication.

[15] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed balls in a potential flow : a kinetic description of the added mass effect, SIAM J. Appl. Math., 60 (1999) 61-83. | MR 1740835 | Zbl 0964.76085

[16] Jabin P.E., Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE., 25 (2000) 541-557. | MR 1748358 | Zbl 0965.35014

[17] Jabin P.E., Macroscopic limit of Vlasov type equations with friction, Ann. IHP Anal. Non Linéaire, 17 (2000) 651-672. | Numdam | MR 1791881 | Zbl 0965.35013

[18] Jabin P.E., Perthame B., Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo, M. Pulvirenti Eds. (Birkhäuser, 2000), pp. 111-147. | MR 1763153 | Zbl 0957.76087

[19] Lions P.L., Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994) 391-461, 1994 and 34 (1994) 539-584. | MR 1295942 | Zbl 0884.35124

[20] Nieto J., Poupaud F., Soler J., High field limit for the VPFP system, Arch. Rat. Mech. Anal., 158 (2001) 29-59. | MR 1834113 | Zbl 1038.82068

[21] Poupaud F., Soler J., Parabolic limit and stability of the Vlasov-PoissonFokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000) 1027-1045. | MR 1780148 | Zbl 1018.76048

[22] Russo G., Smereka P., Kinetic theory for bubbly flows I, II, SIAM J. Appl. Math., 56 (1996) 327-371. | MR 1381649 | Zbl 0857.76091

[23] Simon J., Compact sets in L p (0,T ; B), Ann. Mat. Pura. Appl. IV, 146 (1987) 65-96. | MR 916688 | Zbl 0629.46031

[24] Williams F. A., Combustion theory (Benjamin Cummings Publ., 2nd ed., 1985