We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.
@article{JEDP_2002____A15_0, author = {Klainerman, Sergi\`u and Rodnianski, Igor}, title = {Regularity and geometric properties of solutions of the Einstein-Vacuum equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2002}, pages = {1-14}, doi = {10.5802/jedp.613}, mrnumber = {1968211}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2002____A15_0} }
Klainerman, Sergiu; Rodnianski, Igor. Regularity and geometric properties of solutions of the Einstein-Vacuum equations. Journées équations aux dérivées partielles, (2002), pp. 1-14. doi : 10.5802/jedp.613. http://gdmltest.u-ga.fr/item/JEDP_2002____A15_0/
[An-Mo] Elliptic-hyperbolic systems and the Einstein equations. preprint | MR 1967177
and[Ba-Ch1] Équations d'ondes quasilinéaires et estimation de Strichartz. Amer. J. Math., vol. 121; (1999), pp. 1337-1777 | MR 1719798 | Zbl 0952.35073
and .[Ba-Ch2] Équations d'ondes quasilinéaires et effet dispersif. IMRN, vol. 21; (1999), pp. 1141-1178 | MR 1728676 | Zbl 0938.35106
and .[Br] Théorème d'existence pour certains systèmes d'équations aux dérivées partielles nonlinéaires., Acta Math. 88 (1952), 141-225. | MR 53338 | Zbl 0049.19201
.[Ch-Kl] The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, 41. Princeton University Press, 1993 | MR 1316662 | Zbl 0827.53055
and .[Ha-El] The large scale structure of spacetime. Cambridge Monographs on Mathematical Physics, 1973 | MR 424186 | Zbl 0265.53054
and .[H-K-M] Well posed quasilinear second order hyperbolic systems Arch. Rat. Mech. Anal. 63 (1976) no 3, 273-294. | MR 420024 | Zbl 0361.35046
, and .[Kl1] A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations. IMRN, 2001, No 5, 221-274. | MR 1820023 | Zbl 0993.35022
.[Kl2] PDE as a unified subject Special Volume GAFA 2000, 279-315 XV-12 | MR 1826256 | Zbl 1002.35002
.[Kl-Ni] On the initial value problem in General Relativity. preprint
and .[Kl-Ro] Improved local well posedness for quasilinear wave equations in dimension three. to appear in Duke Math. Journ. | MR 1962783 | Zbl 1031.35091
and .[Kl-Ro1] Rough solutions of the Einstein-vacuum equations. preprint | MR 1885093
and .[Kl-Ro2] The causal structure of microlocalized, rough, Einstein metrics. preprint | MR 1885093
and .[Kl-Ro3] Ricci defects of microlocalized, rough, Einstein metrics. preprint | MR 2052472
and .[Li] Counterexamples to local existence for semilinear wave equations. AJM, vol. 118; (1996), pp. 1-16 | MR 1375301 | Zbl 0855.35080
,[Po-Si] Local regularity of non linear wave equations in three space dimensions. CPDE, vol. 18; (1993), pp. 169-177 | MR 1211729 | Zbl 0803.35096
and .[Sm] A parametrix construction for wave equations with C 1, 1 coefficients. Annales de L'Institut Fourier, vol. 48; (1998), pp. 797-835 | Numdam | MR 1644105 | Zbl 0974.35068
.[Sm-So] On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., vol. 1; (1994), pp. 729-737 | MR 1306017 | Zbl 0832.35018
and .[Sm-Ta1] Sharp counterexamples for Strichartz estimates for low regularity metrics. Preprint | MR 1909638
and .[Sm-Ta2] Sharp local well-posedness results for the nonlinear wave equation. Preprint
and .[Ta2] Strichartz estimates for second order hyperbolic operators with non smooth coefficients. Preprint
.[Ta1] Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation.Amer. J. Math., vol. 122; (2000) | MR 1749052 | Zbl 0959.35125
.