Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur mathbbR 3 en dessous l’espace d’énergie
Colliander, J. ; Keel, M. ; Staffilani, G. ; Takaoka, H. ; Tao, T.
Journées équations aux dérivées partielles, (2002), p. 1-15 / Harvested from Numdam

Nous profilons une démonstration de l’existence globale et diffusion pour l’équation de Schrödinger nonlinéaire répulsive cubique avec données à H s ( 3 ) pour s>4 5. Le raisonnement utilise une estimation nouvelle de type de Morawetz. Nous détaillerons la démonstration ailleurs.

We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in H s ( 3 ) for s>4 5. The proof uses a new estimate of Morawetz type.

Publié le : 2002-01-01
DOI : https://doi.org/10.5802/jedp.608
@article{JEDP_2002____A10_0,
     author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, Terence},
     title = {Existence globale et diffusion pour l'\'equation de Schr\"odinger non lin\'eaire r\'epulsive cubique sur $mathbb{R}^3$ en dessous l'espace d'\'energie},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2002},
     pages = {1-15},
     doi = {10.5802/jedp.608},
     mrnumber = {1968206},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2002____A10_0}
}
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie. Journées équations aux dérivées partielles,  (2002), pp. 1-15. doi : 10.5802/jedp.608. http://gdmltest.u-ga.fr/item/JEDP_2002____A10_0/

[1] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. Math. 118, (1983), 187-214. | MR 707166 | Zbl 0522.35064

[2] J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity Intern. Mat. Res. Notices, 5, (1998), 253-283. | MR 1616917 | Zbl 0917.35126

[3] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12, (1999), 145-171. | MR 1626257 | Zbl 0958.35126

[4] J. Bourgain. Scattering in the energy space and below for 3D NLS, Jour. D'Anal. Math., 75:267-297, 1998. | MR 1655835 | Zbl 0972.35141

[5] J. Bourgain, Global solutions of nonlinear Schrödinger equations American Math. Society, Providence, R.I., 1999. | MR 1691575 | Zbl 0933.35178

[6] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, GAFA, 3 (1993), 107-156. | MR 1209299 | Zbl 0787.35097

[7] T. Cazenave, F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in H 1. Manuscripta Math. 61 (1988), 477-494. | MR 952091 | Zbl 0696.35153

[8] J. Colliander, G. Staffilani, H. Takaoka, Global wellposedness for KdV below L 2, Math. Res. Lett. 6 (1999), no. 5-6, 755-778. | MR 1739230 | Zbl 0959.35144

[9] J. Colliander, J. Delort, C. Kenig, G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), no. 8, 3307-3325. | MR 1828607 | Zbl 0970.35142

[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Global well-posedness for KdV in Sobolev spaces of negative index, Electronic Jour. Diff. Eq. 2001 (2001), No 26, 1-7. | MR 1824796 | Zbl 0967.35119

[11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Sharp Global WellPosedness of KdV and Modified KdV on the R and T, submitted to Jour. Amer. Math. Soc. | MR 1969209 | Zbl 1025.35025

[12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Multilinear estimates for periodic KdV equations, and applications, preprint. | MR 2054622

[13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Global well-posedness for the Schrödinger equations with derivative, Siam Jour. Math. Anal., 33 (2001), 649-669. | MR 1871414 | Zbl 1002.35113

[14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T.Tao, A refined global wellposedness result for Schrödinger equations with derivative, to appear in Siam Jour. of Math. Anal.. | MR 1950826 | Zbl 1034.35120

[15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Almost conservation laws and global rough solutions to a Nonlinear Schrödinger Equation, to appear in Math. Res. Letters. X-13 | MR 1906069 | Zbl 1152.35491

[16] G. Fonseca, F. Linares, and G. Ponce. Global well-posedness of the modified Korteweg-de Vries equation, Comm. Partial Differential Equations, 24 (1999), 683-705. | MR 1683054 | Zbl 0930.35154

[17] J. Ginibre and G. Velo. Scattering theory in the energy space for a class of nonlinear SchrŽödinger equations, J. Math. Pures Appl., 9, (1985), 363-401. | MR 839728 | Zbl 0535.35069

[18] J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. | MR 1151250 | Zbl 0698.35112

[19] M. Keel, and T. Tao, Global well-posedness for large data for the MaxwellKlein-Gordon equation below the energy norm, preprint.

[20] M. Keel, T. Tao, Local and global well-posedness of wave maps on R 1+1 for rough data, Intl. Math. Res. Notices 21 (1998), 1117-1156. | MR 1663216 | Zbl 0999.58013

[21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. | MR 1646048 | Zbl 0922.35028

[22] C. Kenig, G. Ponce, L. Vega; Global well-posedness for semi-linear wave equations. Comm. Partial Diff. Eq. 25 (2000), 1741-1752. | MR 1778778 | Zbl 0961.35092

[23] J. Lin, W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, Journ. Funct. Anal. 30, (1978), 245-263. | MR 515228 | Zbl 0395.35070

[24] C. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A 306 (1968), 291-29 | MR 234136 | Zbl 0157.41502

[25] C. Morawetz, W. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1-31. | MR 303097 | Zbl 0228.35055

[26] I.E. Segal, Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311. | MR 492892 | Zbl 0344.35058

[27] R.S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-774. | Zbl 0372.35001

[28] H. Takaoka, Global well-posedness for the Schrödinger equations with derivative in a nonlinear term and data in low order Sobolev space, Electronic Jour. Diff. Eq., 42 (2001), 1-23. | MR 1836810 | Zbl 0972.35140

[29] H. Takaoka, N. Tzvetkov, Global low regularity solutions for KadomtsevPetviashvili equation, Internat. Math. Res. Notices, 2001, No. 2, 77-114. | Zbl 0977.35126

[30] T. Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-544. | MR 1869874 | Zbl 1020.35046

[31] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987) | MR 891945 | Zbl 0638.35036