Nous établissons des estimations de Strichartz avec perte de dérivée fractionnaire pour l'équation de Schrödinger sur toute variété riemannienne compacte. Nous en déduisons des théorèmes d'existence globale pour le problème de Cauchy d'équations de Schrödinger non-linéaires sur les surfaces dans le cas de non-linéarités polynomiales défocalisantes, et sur les variétés de dimension trois dans le cas de non-linéarités quadratiques. Nous discutons également l'optimalité de ces estimées de Strichartz sur les sphères.
We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.
@article{JEDP_2001____A5_0, author = {Burq, Nicolas and G\'erard, Patrick and Tzvetkov, Nikolay}, title = {The Schr\"odinger equation on a compact manifold : Strichartz estimates and applications}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2001}, pages = {1-18}, doi = {10.5802/jedp.589}, mrnumber = {1843406}, zbl = {01808681}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2001____A5_0} }
Burq, Nicolas; Gérard, Patrick; Tzvetkov, Nikolay. The Schrödinger equation on a compact manifold : Strichartz estimates and applications. Journées équations aux dérivées partielles, (2001), pp. 1-18. doi : 10.5802/jedp.589. http://gdmltest.u-ga.fr/item/JEDP_2001____A5_0/
[Besse] Manifolds all of whose geodesics are closed Springer-Verlag, Berlin-New York, 1978. | MR 496885 | Zbl 0387.53010
[Bo1] Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. and Funct. Anal. 3 1993, 107-156. | MR 1209299 | Zbl 0787.35097
[Bo2] Exponential sums and nonlinear Schrödinger equations, Geom. and Funct. Anal. 3 1993, 157-178. | MR 1209300 | Zbl 0787.35096
[Bo3] Global solutions of nonlinear Schrödinger equations, Colloq. Publications, American Math. Soc., 1999. | MR 1691575 | Zbl 0933.35178
[Bo4] Global wellposedness of defocusing critical nonlinear Schrödinger equations in the radial case, J. Amer. Math. Soc. 12 1999, 145-171. | MR 1626257 | Zbl 0958.35126
[BG] Nonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods and Applications, 4 1980, 677-681. | MR 582536 | Zbl 0451.35023
,[BGT] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, preprint 2001.
, ,[C] An introduction to nonlinear Schrödinger equations, Text. Met. Mat. 22, Inst. Mat., Rio de Janeiro, 1989.
[CW] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis, Theory, Methods and Applications, 1990, 807-836 | MR 1055532 | Zbl 0706.35127
,[CdV] Le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helvetici 54 1979, 508-522. | MR 543346 | Zbl 0459.58014
[D] Spectral theory and differential operators, Cambridge University Press 1995. | MR 1349825 | Zbl 0893.47004
[GV1] The global Cauchy problem for the nonlinear Schrödinger equation, Ann. I.H.P. (Anal. non lin.) 2 1985, 309-327. | Numdam | MR 801582 | Zbl 0586.35042
,[GV2] Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys. 144 1992, 163-188. | MR 1151250 | Zbl 0762.35008
and[Gr] Representations of Integers as Sums of Squares, Springer-Verlag, 1985. | MR 803155 | Zbl 0574.10045
[Gu] Lectures on spectral theory of elliptic operators, Duke Math. J. 44 1977, 129-137. | MR 448452 | Zbl 0463.58024
[HS] Equation de Schrödinger avec champ magnetique et équation de Harper, Lecture notes in Physics, 345 1989, 118-197. | MR 1037319 | Zbl 0699.35189
,[Ka] Some generalizations of the Strichartz-B-Brenner inequality, Leningrad Math. J. 1 1990, 693-726. | MR 1015129 | Zbl 0732.35118
[K] On nonlinear Schrödinger equations, Ann. I.H.P. (Phys. Théor.) 46 1987, 113-129. | Numdam | MR 877998 | Zbl 0632.35038
[KT] Endpoint Strichartz estimates, Amer. J. Math. 120 1998, 955-980. | MR 1646048 | Zbl 0922.35028
,[Leb] Contrôle de l'équation de Schrödinger, J. Math. Pures Appl. 71 1992, 267-291. | MR 1172452 | Zbl 0838.35013
[ReSi] Methods of Modern Mathematical Physics, vol.2, Academic Press, 1975. | MR 751959 | Zbl 0308.47002
,[Ro] Autour de l'approximation semi-classique Progress in Mathematics, vol. 68, Birkhäuser, 1987. | MR 897108 | Zbl 0621.35001
[Sogge] Oscillatory integrals and spherical harmonics, Duke Math. J. 53 1986, 43-65. | MR 835795 | Zbl 0636.42018
[Sogge2] Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 1988, 123-138. | MR 930395 | Zbl 0641.46011
[Sogge3] Fourier integrals in classical analysis, Cambridge tracts in Mathematics, 1993. | MR 1205579 | Zbl 0783.35001
[SZ] Riemannian manifolds with maximal eigenfunction growth, Preprint 2001. | MR 1924569
,[StTa] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Preprint 2000. | MR 1924470
,[S] Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 1977, 705-714. | MR 512086 | Zbl 0372.35001
[To] A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 1975, 477-478. | MR 358216 | Zbl 0298.42011
[Y] Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110 1987, 415-426. | MR 891945 | Zbl 0638.35036