We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
@article{JEDP_2001____A2_0, author = {Constantin, Adrian}, title = {Geometrical methods in hydrodynamics}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2001}, pages = {1-14}, doi = {10.5802/jedp.586}, mrnumber = {1843403}, zbl = {1007.35086}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2001____A2_0} }
Constantin, Adrian. Geometrical methods in hydrodynamics. Journées équations aux dérivées partielles, (2001), pp. 1-14. doi : 10.5802/jedp.586. http://gdmltest.u-ga.fr/item/JEDP_2001____A2_0/
[Ar] Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16:319-361, 1966. | Numdam | MR 202082 | Zbl 0148.45301
.[Ar2] Mathematical Methods of Classical Mechanics. Springer Verlag, New York, 1989. | MR 997295 | Zbl 0386.70001
.[AK] Topological Methods in Hydrodynamics. Springer Verlag, New York, 1998. | MR 1612569 | Zbl 0902.76001
and .[BSS] Multipeakons and a theorem of Stieltjes. Inverse Problems, 15:1-4, 1999. | MR 1675325 | Zbl 0923.35154
, and .[Br] Minimal geodesics on groups of volume-preserving maps and generalized solutions to the Euler equations. Comm. Pure Appl. Math., 52:411-452, 1999. | MR 1658919 | Zbl 0910.35098
.[CH] An integrable shallow water equation with peaked solitons. Phys. Rev. Letters, 71:1661-1664, 1993. | MR 1234453 | Zbl 0972.35521
and .[AC] A Lagrangian approximation to the water-wave problem. Appl. Math. Lett., to appear. | MR 1849230 | Zbl 0985.35069
.[CE] Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475-504, 1998. | MR 1604278 | Zbl 0934.35153
and .[CK] On the geometric approach to the motion of inertial mechanical systems. Technical Report 6, Lund University, 2001. | MR 1930889
and .[CM] A shallow water equation on the circle. Comm. Pure Appl. Math., 52:949-982, 1999. | MR 1686969 | Zbl 0940.35177
and .[CMo] Global weak solutions for a shallow water equation. Comm. Math. Phys., 211:45-61, 2000. | MR 1757005 | Zbl 1002.35101
and .[CS] Stability of peakons. Comm. Pure Appl. Math., 53:603-610, 2000. | MR 1737505 | Zbl 1049.35149
and .[EM] Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math., 92:102-163, 1970. | MR 271984 | Zbl 0211.57401
and .[FF] Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D, 4:47-66, 1981. | MR 636470
and .[Ha] The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc., 7:65-222, 1982. | MR 656198 | Zbl 0499.58003
.[HM] The Cauchy problem for an integrable shallow-water equation. Differential and Integral Equations, 14:821-831, 2001. | MR 1828326 | Zbl 1009.35075
and .[Jo] A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, 1997. | MR 1629555 | Zbl 0892.76001
.[La] Fundamentals of Differential Geometry. Springer Verlag, New York, 1999. | MR 1666820 | Zbl 0932.53001
.[LO] Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations, 162:27-63, 2000. | MR 1741872 | Zbl 0958.35119
and .[McK] Breakdown of a shallow water equation. Asian J. Math., 2:203-208, 1998. | MR 1734131 | Zbl 0959.35140
.[Mil] Remarks on infinite-dimensional Lie groups. In Relativity, Groups and Topology (Les Houches, 1983), pages 1009-1057. North-Holland, Amsterdam, 1984. | MR 830252 | Zbl 0594.22009
.[Mi] A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys., 24:203-208, 1998. | MR 1491553 | Zbl 0901.58022
.[Ol] Applications of Lie Groups to Differential Equations. Springer Verlag, New York, 1993. | MR 1240056 | Zbl 0785.58003
.[Sh] Generalized fluid flows, their approximation and applications. Geom. Funct. Anal., 4:586-620, 1994. | MR 1296569 | Zbl 0851.76003
.[Wu]Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12:445-495, 1999. | MR 1641609 | Zbl 0921.76017
.