Weyl type upper bounds on the number of resonances near the real axis for trapped systems
Stefanov, Plamen
Journées équations aux dérivées partielles, (2001), p. 1-16 / Harvested from Numdam

We study semiclassical resonances in a box Ω(h) of height h N , N1. We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set 𝒯 of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator P # (h) with discrete spectrum the number of resonances in Ω(h) is bounded by the number of eigenvalues of P # (h) in an interval a bit larger than the projection of Ω(h) on the real line. As an application, we prove a Weyl type estimate of the number of resonances in Ω(h) in terms of the measure of 𝒯. We prove a similar estimate in case of classical scattering by a metric and obstacle.

@article{JEDP_2001____A13_0,
     author = {Stefanov, Plamen},
     title = {Weyl type upper bounds on the number of resonances near the real axis for trapped systems},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {2001},
     pages = {1-16},
     doi = {10.5802/jedp.597},
     mrnumber = {1843414},
     zbl = {01808689},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_2001____A13_0}
}
Stefanov, Plamen. Weyl type upper bounds on the number of resonances near the real axis for trapped systems. Journées équations aux dérivées partielles,  (2001), pp. 1-16. doi : 10.5802/jedp.597. http://gdmltest.u-ga.fr/item/JEDP_2001____A13_0/

[B2] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, preprint. | MR 1914456

[B3] N. Burq, Semi-classical estimates for the resolvent in non-trappimg geometries, preprint. | MR 1876933

[G] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convex, Bull. Soc. Math. France, Mémoire n. 31, 116, 1988. | Numdam | MR 998698 | Zbl 0654.35081

[DSj] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Society Lecture Notes Series, No. 268, Cambridge Univ. Press, 1999. | MR 1735654 | Zbl 0926.35002

[HSj] B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), 24-25, 1986. | Numdam | MR 871788 | Zbl 0631.35075

[H] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, 1985. | MR 404822 | Zbl 0601.35001

[I] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin, 1998. | MR 1631419 | Zbl 0906.35003

[K] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966. | MR 203473 | Zbl 0148.12601

[LZ] K. Lin and M. Zworski, Resonances in chaotic scattering, www.math.berkeley.edu/~kkylin/resonances/.

[MSj] R. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, II. Comm. Pure Appl. Math. 31 1978, no. 5, 593-617, and 35 1982, no. 2, 129-168. | Zbl 0546.35083

[Po] G. Popov, Quasi-modes for the Laplace operator and Glancing hypersurfaces, in: Proceedings of Conference on Microlocal analysis and Nonlinear Waves, Minnesota 1989, M. Beals, R. Melrose and J. Rauch eds., Springer Verlag, Berlin-Heidelberg-New York, 1991. | MR 1120290 | Zbl 0794.35030

[Sj1] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60(1) 1990, 1-57. | MR 1047116 | Zbl 0702.35188

[Sj2] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and Spectral Theory (Lucca, 1996), 377-437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. | MR 1451399 | Zbl 0877.35090

[SjV] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 1997, 287-306. | MR 1474193 | Zbl 0890.35098

[SjZ] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of AMS 4(4) 1991, 729-769. | MR 1115789 | Zbl 0752.35046

[St1] P. Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math. J. 99 1999, 75-92. | MR 1700740 | Zbl 0952.47013

[St2] P. Stefanov, Lower bound of the number of the Rayleigh resonances for arbitrary body, Indiana Univ. Math. J. 49(2)(2000), 405-426. | MR 1777025 | Zbl 0961.35098

[St3] P. Stefanov, Resonance expansions and Rayleigh waves, Math. Res. Lett., 8(1-2)(2001), 105-124. | MR 1825264 | Zbl 0987.35097

[StV1] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78 1995, 677-714. | MR 1334206 | Zbl 0846.35139

[TZ1] S.-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett., 5 1998, 261-272. | MR 1637824 | Zbl 0913.35101

[TZ2] S.-H. Tang and M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53(10)(2000), 1305-1334. | MR 1768812 | Zbl 1032.35148

[V] G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 1992, 39-49. | MR 1125006 | Zbl 0754.35105

[Ze] M. Zerzeri, Majoration du nombre des résonances près de l'axe reél pour une perturbation, à support compacte, abstraite, du laplacien, preprint, 2000-2001, Univ. Paris 13. | MR 1876413

[Z1] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 1989, 311-323. | MR 1016891 | Zbl 0705.35099

[Z2] M. Zworski, private communication, 1992.