We study semiclassical resonances in a box of height , . We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator with discrete spectrum the number of resonances in is bounded by the number of eigenvalues of in an interval a bit larger than the projection of on the real line. As an application, we prove a Weyl type estimate of the number of resonances in in terms of the measure of . We prove a similar estimate in case of classical scattering by a metric and obstacle.
@article{JEDP_2001____A13_0, author = {Stefanov, Plamen}, title = {Weyl type upper bounds on the number of resonances near the real axis for trapped systems}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2001}, pages = {1-16}, doi = {10.5802/jedp.597}, mrnumber = {1843414}, zbl = {01808689}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2001____A13_0} }
Stefanov, Plamen. Weyl type upper bounds on the number of resonances near the real axis for trapped systems. Journées équations aux dérivées partielles, (2001), pp. 1-16. doi : 10.5802/jedp.597. http://gdmltest.u-ga.fr/item/JEDP_2001____A13_0/
[B2] Lower bounds for shape resonances widths of long range Schrödinger operators, preprint. | MR 1914456
,[B3] Semi-classical estimates for the resolvent in non-trappimg geometries, preprint. | MR 1876933
,[G] Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convex, Bull. Soc. Math. France, Mémoire n. 31, 116, 1988. | Numdam | MR 998698 | Zbl 0654.35081
,[DSj] Spectral Asymptotics in the Semi-Classical Limit, London Math. Society Lecture Notes Series, No. 268, Cambridge Univ. Press, 1999. | MR 1735654 | Zbl 0926.35002
and ,[HSj] Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), 24-25, 1986. | Numdam | MR 871788 | Zbl 0631.35075
, ,[H] The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, 1985. | MR 404822 | Zbl 0601.35001
,[I] Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin, 1998. | MR 1631419 | Zbl 0906.35003
,[K] Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966. | MR 203473 | Zbl 0148.12601
,[LZ] Resonances in chaotic scattering, www.math.berkeley.edu/~kkylin/resonances/.
and ,[MSj] Singularities of boundary value problems. I, II. Comm. Pure Appl. Math. 31 1978, no. 5, 593-617, and 35 1982, no. 2, 129-168. | Zbl 0546.35083
and ,[Po] Quasi-modes for the Laplace operator and Glancing hypersurfaces, in: Proceedings of Conference on Microlocal analysis and Nonlinear Waves, Minnesota 1989, M. Beals, R. Melrose and J. Rauch eds., Springer Verlag, Berlin-Heidelberg-New York, 1991. | MR 1120290 | Zbl 0794.35030
,[Sj1] Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60(1) 1990, 1-57. | MR 1047116 | Zbl 0702.35188
,[Sj2] A trace formula and review of some estimates for resonances, in Microlocal analysis and Spectral Theory (Lucca, 1996), 377-437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. | MR 1451399 | Zbl 0877.35090
,[SjV] Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 1997, 287-306. | MR 1474193 | Zbl 0890.35098
and ,[SjZ] Complex scaling and the distribution of scattering poles, Journal of AMS 4(4) 1991, 729-769. | MR 1115789 | Zbl 0752.35046
and ,[St1] Quasimodes and resonances: sharp lower bounds, Duke Math. J. 99 1999, 75-92. | MR 1700740 | Zbl 0952.47013
,[St2] Lower bound of the number of the Rayleigh resonances for arbitrary body, Indiana Univ. Math. J. 49(2)(2000), 405-426. | MR 1777025 | Zbl 0961.35098
,[St3] Resonance expansions and Rayleigh waves, Math. Res. Lett., 8(1-2)(2001), 105-124. | MR 1825264 | Zbl 0987.35097
,[StV1] Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78 1995, 677-714. | MR 1334206 | Zbl 0846.35139
and ,[TZ1] From quasimodes to resonances, Math. Res. Lett., 5 1998, 261-272. | MR 1637824 | Zbl 0913.35101
and ,[TZ2] Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53(10)(2000), 1305-1334. | MR 1768812 | Zbl 1032.35148
and ,[V] Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 1992, 39-49. | MR 1125006 | Zbl 0754.35105
,[Ze] Majoration du nombre des résonances près de l'axe reél pour une perturbation, à support compacte, abstraite, du laplacien, preprint, 2000-2001, Univ. Paris 13. | MR 1876413
,[Z1] Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 1989, 311-323. | MR 1016891 | Zbl 0705.35099
,[Z2]
, private communication, 1992.