We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order at time for the state defined by . We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure associated to the hamiltonian and the state . We especially concentrate on continuous models.
@article{JEDP_2000____A1_0, author = {Barbaroux, Jean-Marie and Germinet, Fran\c cois and Tcheremchantsev, Serguei}, title = {Quantum diffusion and generalized R\'enyi dimensions of spectral measures}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {2000}, pages = {1-16}, mrnumber = {2001f:81042}, zbl = {01808691}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_2000____A1_0} }
Barbaroux, Jean-Marie; Germinet, François; Tcheremchantsev, Serguei. Quantum diffusion and generalized Rényi dimensions of spectral measures. Journées équations aux dérivées partielles, (2000), pp. 1-16. http://gdmltest.u-ga.fr/item/JEDP_2000____A1_0/
[1] Theory of linear Operators in Hilbert spaces Vol II, Ungar, New-York, 1963.
, ,[2] Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal and Appl. 213 (1997), 698-722. | MR 98g:81028 | Zbl 0893.47048
, , ,[3] Nonlinear variation of diffusion exponents in quantum dynalics, C.R. Acad. Sci., Parist.330 Série I (1999), 409-414. Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Preprint (2000). | Zbl 0963.81024
, , ,[4] Generalized fractal dimensions : equivalences and basic properties, Preprint (2000).
, , ,[5] Anomalous quantum transport in presence of self-similar spectra, Ann. Inst. Henri Poincaré Vol 71, Numero 5 (1999), 1-21. | Numdam | MR 2001a:82068 | Zbl 01421478
, ,[6] Universal Lower Bounds for Quantum Diffusion, J. Funct. Anal. 168 (1999), 327-354. | MR 2000h:81060 | Zbl 0961.81008
, ,[7] Connection between quantum dynamics and spectral properties of time evolution operators in «Differential Equations and Applications in Mathematical Physics», Eds. W.F. Ames, E.M. Harrel, J.V. Herod (Academic Press 1993), 59-69. | MR 94g:81205 | Zbl 0797.35136
,[8] A sparse potential test of Guarneri bounds, to appear in the Proceeding of the Conference on Asymptotics Properties of Time Evolutions in Classical and Quantum Systems, Bologna, 1999.
, ,[9] Operators with singular continuous spectrum IV : Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69 (1996), 153-200. | MR 97m:47002 | Zbl 0908.47002
, , , ,[10] The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, No 85, Cambridge Univ. Press, UK, 1985. | MR 88d:28001 | Zbl 0587.28004
,[11] Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733.
,[12] Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J. 5, paper 1 (1999). | MR 2000d:81033 | Zbl 0910.47059
, ,[13] Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), 317-324. | MR 2001c:81044 | Zbl 1001.81019
, ,[14] Dimensional Hausdorff properties of singular continuous spectra Phys. Rev. Letters 76 (1996), 1765-1769. | MR 96k:81041 | Zbl 0935.81018
, :[15] Quantum Dynamics and Decomposition of Singular Continuous Spectrum, J. Funct. Anal 142 (1996), 406-445. | MR 97k:81044 | Zbl 0905.47059
,[16] Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589; Wave Propagation in Almost-Periodic Structures, Physica D 109 (1997), 113-127. | Zbl 0925.58041
.[17] Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. | MR 91m:42015 | Zbl 0693.28005
:[18] Schrödinger semi-groups, Bull. Amer. Math. Soc. Vol. 7, n° 3 (1982), 447-526. | MR 86b:81001a | Zbl 0524.35002
,[19] Packing Measure, and its Evaluation for a Brownian Path, Trans. Amer. Math. Soc. 288 (1985), 679-699. | MR 87a:28002 | Zbl 0537.28003
, ,