Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations
Planchon, Fabrice
Journées équations aux dérivées partielles, (1999), p. 1-11 / Harvested from Numdam

We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space B ˙ 2 n 2-2 p, (𝐑 n ), when the nonlinearity is of type u p , for p𝐍. This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.

Publié le : 1999-01-01
@article{JEDP_1999____A9_0,
     author = {Planchon, Fabrice},
     title = {Self-similar solutions and Besov spaces for semi-linear Schr\"odinger and wave equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1999},
     pages = {1-11},
     zbl = {01810582},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1999____A9_0}
}
Planchon, Fabrice. Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations. Journées équations aux dérivées partielles,  (1999), pp. 1-11. http://gdmltest.u-ga.fr/item/JEDP_1999____A9_0/

[1] J. Bergh and J. Löfstrom. Interpolation Spaces, An Introduction. Springer-Verlag, 1976. | Zbl 0344.46071

[2] J.-M. Bony. Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup., 14:209-246, 1981. | Numdam | MR 84h:35177 | Zbl 0495.35024

[3] J. Bourgain. Refinements of Strichartz inequality and applications to 2-D NLS with critical nonlinearity. I.M.R.N., 5:253-283, 1998. | MR 99f:35184 | Zbl 0917.35126

[4] M. Cannone. Ondelettes, Paraproduits et Navier-Stokes. Diderot Editeurs, Paris, 1995. | MR 2000e:35173 | Zbl 01232236

[5] T. Cazenave and F. Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. T.M.A., 14:807-836, 1990. | MR 91j:35252 | Zbl 0706.35127

[6] T. Cazenave and F. Weissler. Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations. Math. Zeit., 228:83-120, 1998. | MR 99d:35149 | Zbl 0916.35109

[7] T. Cazenave and F. Weissler. More self-similar solutions of the nonlinear Schrödinger equation. No D.E.A., 5:355-365, 1998. | MR 99f:35185 | Zbl 0990.35121

[8] J. Ginibre and Velo. The global Cauchy problem for the NLS equation revisited. Ann. IHP, An. non-linéaire, 2:309-327, 1985. | Numdam | MR 87b:35150 | Zbl 0586.35042

[9] M. Keel and T. Tao. Enpoint Strichartz estimates. American Journal of Mathematics, 120(5):955-980, 1998. | MR 2000d:35018 | Zbl 0922.35028

[10] H. Lindbladt and C. D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. J. funct. Anal., 130:357-426, 1995. | MR 96i:35087 | Zbl 0846.35085

[11] R. O'Neil. Convolution operators and L(p,q) spaces. Duke Mathematical Journal, 30:129-142, 1963. | MR 26 #4193 | Zbl 0178.47701

[12] F. Oru. Rôle des oscillations dans quelques problèmes d'analyse non-linéaire. PhD thesis, ENS Cachan, 1998.

[13] H. Pecher. Self-similar and asymptotically self-similar solutions of nonlinear wave equations. preprint. | Zbl 0960.35067

[14] J. Peetre. New thoughts on Besov Spaces. Duke Univ. Math. Series. Duke University, Durham, 1976. | MR 57 #1108 | Zbl 0356.46038

[15] F. Planchon. On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. preprint. | Zbl 0961.35148

[16] F. Planchon. Self-similar solutions and semi-linear wave equations in Besov spaces. preprint. | Zbl 0979.35106

[17] F. Planchon. Asymptotic Behavior of Global Solutions to the Navier-Stokes Equations. Rev. Mat. Iberoamericana, 14(1), 1998. | MR 99k:35144 | Zbl 0910.35096

[18] F. Planchon. Solutions autosimilaires et espaces de données initiales pour une équation de Schrödinger non-linéaire. C. R. Acad. Sci. Paris, 328, 1999. | MR 2000d:35028 | Zbl 0931.35038

[19] F. Ribaud and A. Youssfi. Self-similar solutions of nonlinear wave equation. preprint. | Zbl 0933.35140

[20] F. Ribaud and A. Youssfi. Regular and self-similar solutions of nonlinear Schrödinger equations. J. Math. Pures Appl., 9(10):1065-1079, 1998. | MR 2000b:35240 | Zbl 0928.35159

[21] F. Ribaud and A. Youssfi. Solutions globales et solutions auto-similaires de l'équation des ondes non linéaire. C. R. Acad. Sci. Paris, 328, 1999. | MR 2001b:35219 | Zbl 0933.35140

[22] R. Strichartz. Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equations. Duke Mathematical Journal, 44:705-714, 1977. | MR 58 #23577 | Zbl 0372.35001

[23] T. Tao. Low regularity semi-linear wave equations. Comm. in Partial Diff. Equations, 24(3&4):599-629, 1999. | MR 2000a:35175 | Zbl 0939.35123