Domain perturbations, capacity and shift of eigenvalues
Noll, André
Journées équations aux dérivées partielles, (1999), p. 1-10 / Harvested from Numdam

After introducing the notion of capacity in a general Hilbert space setting we look at the spectral bound of an arbitrary self-adjoint and semi-bounded operator H. If H is subjected to a domain perturbation the spectrum is shifted to the right. We show that the magnitude of this shift can be estimated in terms of the capacity. We improve the upper bound on the shift which was given in Capacity in abstract Hilbert spaces and applications to higher order differential operators (Comm. P. D. E., 24:759–775, 1999) and obtain a lower bound which leads to a generalization of Thirring’s inequality if the underlying Hilbert space is an L 2 -space. Moreover, a similar capacitary upper bound for the second eigenvalue is established. The results are finally applied to higher-order partial differential operators.

Publié le : 1999-01-01
@article{JEDP_1999____A8_0,
     author = {Noll, Andr\'e},
     title = {Domain perturbations, capacity and shift of eigenvalues},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1999},
     pages = {1-10},
     mrnumber = {2000h:47023},
     zbl = {01810581},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1999____A8_0}
}
Noll, André. Domain perturbations, capacity and shift of eigenvalues. Journées équations aux dérivées partielles,  (1999), pp. 1-10. http://gdmltest.u-ga.fr/item/JEDP_1999____A8_0/

[Agm65] S. Agmon. Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies, 1965. | MR 31 #2504 | Zbl 0142.37401

[AM95] W. Arendt and S. Monniaux. Domain perturbation for the first eigenvalue of the Dirichlet Schrödinger operator. Oper. Theory Adv. Appl., 78 : 9-19, 1995. | MR 97d:35157 | Zbl 0842.35087

[CF78] I. Chavel and E.A. Feldman. Spectra of domains in compact manifolds. J. Funct. Anal., 30 : 198-222, 1978. | MR 80c:58027 | Zbl 0392.58016

[CF88] I. Chavel and E.A. Feldman. Spectra of manifolds less a small domain. Duke Math. J., 56 : 399-414, 1988. | MR 89h:58195 | Zbl 0645.58042

[Cou95] G. Courtois. Spectrum of manifolds with holes. J. Funct. Anal., 134 : 194-221, 1995. | MR 97b:58142 | Zbl 0847.58076

[Dava] E.B. Davies. Lp spectral theory of higher order elliptic differential operators. preprint 1996.

[Davb] E.B. Davies. Uniformly elliptic operators with measurable coefficients. preprint 1997.

[DMN97] M. Demuth, I. Mcgillivray, and A. Noll. Capacity and spectral theory. In M. Demuth, E. Schrohe, B.-W. Schulze, and J. Sjöstrand, editors, Spectral Theory, Microlocal Analysis, Singular Manifolds, volume 14 of Advances in Partial Differential Equations, pages 12-77. Akademie Verlag, Berlin, 1997. | MR 99f:31007 | Zbl 1062.31500

[FOT94] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes, volume 19 of Studies in Mathematics. Walter de Gruyter Co, Berlin, 1994. | MR 96f:60126 | Zbl 0838.31001

[GZ94] F. Gesztesy and Z. Zhao. Domain perturbations, Brownian motion and ground states of Dirichlet Schrödinger operators. Math. Z., 215 : 143-150, 1994. | MR 95g:60098 | Zbl 0791.60072

[Hör83a] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin-New York, 1983. | Zbl 0521.35002

[Hör83b] L. Hörmander. The Analysis of Linear Partial Differential Operators II. Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin-New York, 1983. | Zbl 0521.35002

[Joh49] F. John. On linear partial differential equations with analytic coefficients. Commun. Pure Appl. Math., 2 : 209-253, 1949. | MR 12,185d | Zbl 0035.34601

[Maz85] V.G. Maz'Ja. Sobolev Spaces. Springer Series in Soviet Mathematics. Springer Verlag Berlin, New York, 1985. | MR 87g:46056

[McG96] I. Mcgillivray. Capacitary estimates for Dirichlet eigenvalues. J. Funct. Anal., 139 : 244-259, 1996. | MR 97f:31024 | Zbl 0896.47017

[MR84] P.J. Mckenna and M. Rao. Lower bounds for the first eigenvalue of the Laplacian with Dirichlet boundary conditions and a theorem of Hayman. Appl. Anal., 18 : 55-66, 1984. | MR 86c:49051 | Zbl 0579.35064

[Nol97] A. Noll. A generalization of Dynkin's formula and capacitary estimates for semibounded operators. In M. Demuth and B.-W. Schulze, editors, Differential Equations, Asymptotic Analysis and Mathematical Physics, volume 100 of Mathematical Research, pages 252-259. Akademie Verlag, Berlin, 1997. | MR 98e:31010 | Zbl 0880.35087

[Nol98] A. Noll. Domain perturbations, shift of eigenvalues and capacity. Technical report, TU Clausthal, 1998. Submitted to Comm. P. D. E.

[Nol99] A. Noll. Capacity in abstract Hilbert spaces and applications to higher order differential operators. Comm. P. D. E., 24 : 759-775, 1999. | MR 2000a:47030 | Zbl 0929.47023

[Oza81] S. Ozawa. Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J., 48(4) : 767-778, 1981. | MR 86k:35117 | Zbl 0483.35064

[Oza82] S. Ozawa. The first eigenvalue of the Laplacian on two-dimensional manifolds. Tohoku Math. J., 34 : 7-14, 1982. | MR 83g:58073 | Zbl 0486.53035

[Oza83] S. Ozawa. Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo, 30 : 53-62, 1983. | MR 84m:35093 | Zbl 0531.35061

[Rau75] J. Rauch. The mathematical theory of crushed ice. In Partial Differential Equations and Related Topics, volume 446 of Lect. Notes in Math., pages 370-379. Springer, Berlin, 1975. | MR 55 #893 | Zbl 0312.35002

[RT75a] J. Rauch and M. Taylor. Electrostatic screening. J. Math. Phys., 16 : 284-288, 1975. | MR 52 #3716

[RT75b] J. Rauch and M. Taylor. Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18 : 27-59, 1975. | MR 51 #13476 | Zbl 0293.35056

[Szn98] A.-S. Sznitman. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Berlin. Springer-Verlag, 1998. | MR 2001h:60147 | Zbl 0973.60003

[Tay76] M. Taylor. Scattering length and perturbations of -Δ by positive potentials. J. Math. Anal. Appl., 53:291-312, 1976. | MR 57 #17028 | Zbl 0336.31005

[Tay79] M. Taylor. Estimate on the fundamental frequency of a drum. Duke Math. J., 46:447-453, 1979. | MR 81g:35097 | Zbl 0418.35068