Accurate Spectral Asymptotics for periodic operators
Ivrii, Victor
Journées équations aux dérivées partielles, (1999), p. 1-11 / Harvested from Numdam

Asymptotics with sharp remainder estimates are recovered for number 𝐍(τ) of eigenvalues of operator A(x,D)-tW(x,x) crossing level E as t runs from 0 to τ, τ. Here A is periodic matrix operator, matrix W is positive, periodic with respect to first copy of x and decaying as second copy of x goes to infinity, E either belongs to a spectral gap of A or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.

Publié le : 1999-01-01
@article{JEDP_1999____A5_0,
     author = {Ivrii, Victor},
     title = {Accurate Spectral Asymptotics for periodic operators},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1999},
     pages = {1-11},
     mrnumber = {2000h:35125},
     zbl = {01810578},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1999____A5_0}
}
Ivrii, Victor. Accurate Spectral Asymptotics for periodic operators. Journées équations aux dérivées partielles,  (1999), pp. 1-11. http://gdmltest.u-ga.fr/item/JEDP_1999____A5_0/

[B1] M. Birman. The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regularperturbations. Boundary value problems, Schrödinger operators, deformation quantization, Math. Top., 8, Akademie Verlag, Berlin, 1995, pp. 334-352. | MR 97d:47055 | Zbl 0848.47032

[B2] M. Birman. The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential. St. Petersburg Math. J., 8 (1997), no. 1, pp. 1-14. | MR 97h:47047 | Zbl 0866.35087

[B3] M. Birman. Discrete spectrum in the gaps of the perturbed periodic Schrödinger operator. II. Non-regular perturbations. St. Petersburg Math. J., 9 (1998), no. 6, pp. 1073-1095. | MR 99h:47054 | Zbl 0911.35082

[BL1] M. Birman, A. Laptev. The negative discrete spectrum of a two-dimensional Schrödinger operator. Comm. Pure Appl. Math., 49 (1996), no. 9, pp. 967-997. | MR 97i:35131 | Zbl 0864.35080

[BL2] M. Birman, A. Laptev. «Non-standard» spectral asymptotics for a two-dimensional Schrödinger operator. Centre de Recherches Mathematiques, CRM Proceedings and Lecture Notes, 12 (1997), pp. 9-16. | MR 1479234 | Zbl 0910.35086

[BLS] M. Birman, A. Laptev, T. Suslina. Discrete spectrum of the twodimensional periodic elliptic second order operator perturbed by a decreasing potential. I. Semiinfinite gap (in preparation). | Zbl 01637582

[BS] M. Birman, T. Suslina. Birman, Suslina. Discrete spectrum of the twodimensional periodic elliptic second order operator perturbed by a decreasing potential. II. Internal gaps (in preparation). | Zbl 01637582

[Ivr1] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics. Springer-Verlag, SMM, 1998, 731+15 pp. | MR 99e:58193 | Zbl 0906.35003

[Ivr2] V. Ivrii. Accurate Spectral Asymptotics for Neumann Laplacian in domains with cusps (to appear in Applicable Analysis).

[JMS] V. Jakšić, S. Molčanov and B. Simon. Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps. J. Func. Anal., 106, (1992), pp. 59-79. | MR 93f:35165 | Zbl 0783.35040

[Sol1] M. Solomyak. On the negative discrete spectrum of the operator -ΔN -αV for a class of unbounded domains in Rd, CRM Proceedings and Lecture Notes, Centre de Recherches Mathematiques, 12, (1997), pp. 283-296. | MR 98i:35138 | Zbl 0888.35075