In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the set of singularities of is a union of maximally extended broken bicharacteristics of . These are curves in the characteristic variety of , which can be quite complicated due to the existence of bound states. We use this result to describe the wave front relation of the S-matrices. Here we only present the statement of the results and sketch some of the ideas in proving them, the complete details will appear elsewhere.
@article{JEDP_1999____A16_0, author = {Vasy, Andr\'as}, title = {Propagation of singularities in many-body scattering in the presence of bound states}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1999}, pages = {1-20}, mrnumber = {2000j:81284}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_1999____A16_0} }
Vasy, András. Propagation of singularities in many-body scattering in the presence of bound states. Journées équations aux dérivées partielles, (1999), pp. 1-20. http://gdmltest.u-ga.fr/item/JEDP_1999____A16_0/
[1] Propriétés de la matrice de diffusion, 2-amas 2-amas, pour les problèmes à N corps à longue portée. Ann. Inst. Henri Poincaré, 59:237-267, 1993. | Numdam | MR 1276326 | MR 95e:81243 | Zbl 0804.35111
.[2] Asymptotic completeness of long-range N-body quantum systems. Ann. Math., 138:427-476, 1993. | MR 1240577 | MR 94g:81209 | Zbl 0844.47005
.[3] Scattering theory of classical and quantum N-particle systems. Springer, 1997. | MR 1459161 | MR 99d:81172 | Zbl 0899.47007
and .[4] Exponential bounds and absence of positive eigen-values of N-body Schrödinger operators. Commun. Math. Phys., 87:429-447, 1982. | MR 682117 | MR 85g:35091 | Zbl 0509.35061
and .[5] A new proof of the Mourre estimate. Duke Math. J., 49:1075-1085, 1982. | MR 683011 | MR 85d:35092 | Zbl 0514.35025
and .[6] Commutator algebra and resolvent estimates, volume 23 of Advanced studies in pure mathematics, pages 69-82. 1994. | MR 1275395 | MR 95h:35154 | Zbl 0814.35086
, , and .[7] N-body resolvent estimates. J. Math. Soc. Japan, 48:135-160, 1996. | MR 1361552 | MR 96j:81131 | Zbl 0851.35101
, , and .[8] Asymptotic completeness for N-body short range systems : a new proof. Commun. Math. Phys., 132:73-101, 1990. | MR 1069201 | MR 91i:81100 | Zbl 0726.35096
.[9] Distorted plane waves for the 3 body Schrödinger operator. Geom. Funct. Anal., to appear. | MR 1748915 | Zbl 0953.35122
.[10] The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983.
.[11] Spectral and scattering theory. Marcel Dekker, 1994. | MR 95c:35006 | Zbl 0798.00016
, editor.[12] Structures of S-matrices for three body Schrödinger operators. Commun. Math. Phys., 146:241-258, 1992. | MR 93h:81146 | Zbl 0748.35026
.[13] A generalization of the radiation condition of Sommerfeld for N-body Schrödinger operators. Duke Math. J., 74:557-584, 1994. | MR 95d:81148 | Zbl 0811.35107
.[14] A uniqueness theorem for the N-body Schrödinger equation and its applications. In Ikawa [11], 1994. | Zbl 0813.35068
.[15] Scattering matrices for two-body schrödinger operators. Scient. Papers College Arts and Sci., Tokyo University, 35:81-107, 1985. | Zbl 0615.35065
and .[16] Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., 291-1:129-144, 1985. | MR 86k:35119 | Zbl 0577.35089
.[17] Propagation des ondes dans les variétés à coins. Ann. scient. Éc. Norm. Sup., 30:429-497, 1997. | Numdam | MR 98d:58183 | Zbl 0891.35072
.[18] Differential analysis on manifolds with corners. In preparation.
.[19] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In Ikawa [11], 1994. | MR 95k:58168 | Zbl 0837.35107
.[20] Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31:593-617, 1978. | MR 58 #11859 | Zbl 0368.35020
and .[21] Scattering metrics and geodesic flow at infinity. Inventiones Mathematicae, 124:389-436, 1996. | MR 96k:58230 | Zbl 0855.58058
and .[22] Absence of singular continuous spectrum of certain self-adjoint operators. Commun. Math. Phys., 78:391-408, 1981. | MR 82c:47030 | Zbl 0489.47010
.[23] Spectral analysis of N-body Schrödinger operators. Ann. Math., 114:519-567, 1981. | MR 83b:81129 | Zbl 0477.35069
, , and .[24] N-particle scattering problem : asymptotic completeness for short range systems. Ann. Math., 125:35-108, 1987. | MR 88m:81137 | Zbl 0646.47009
and .[25] Long-range many-body scattering. Inventiones Math., 99:115-143, 1990. | MR 91e:81114 | Zbl 0702.35197
and .[26] Asymptotic completeness of N ≤ 4-particle systems with the Coulomb-type interactions. Duke Math. J., 71:243-298, 1993. | MR 94i:81141 | Zbl 0853.70010
and .[27] Asymptotic completeness of N-particle long-range scattering. J. Amer. Math. Soc., 7:307-334, 1994. | MR 94k:81327 | Zbl 0811.35091
and .[28] Smoothness of N-body scattering amplitudes. Reviews in Math. Phys., 4:619-658, 1992. | MR 94i:81142 | Zbl 0781.35047
.[29] Structure of the resolvent for three-body potentials. Duke Math. J., 90:379-434, 1997. | MR 98k:81295 | Zbl 0891.35111
.[30] Propagation of singularities in euclidean many-body scattering in the presence of bound states. In preparation, 1999.
.[31] Propagation of singularities in many-body scattering. Preprint, 1999. | Zbl 01810589
.[32] Scattering matrices in many-body scattering. Commun. Math. Phys., 200:105-124, 1999. | MR 99m:81278 | Zbl 0929.47044
.[33] Propagation of singularities in three-body scattering. Astérisque, To appear. | Zbl 0941.35001
.[34] Microlocal estimates for N-body Schrödinger operators. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 40:337-385, 1993. | Zbl 0810.35073
.[35] Radiation conditions and scattering theory for N-particle Hamiltonians. Commun. Math. Phys., 154:523-554, 1993. | MR 95b:81220 | Zbl 0781.35048
.