Loading [MathJax]/extensions/MathZoom.js
Propagation of singularities in many-body scattering in the presence of bound states
Vasy, András
Journées équations aux dérivées partielles, (1999), p. 1-20 / Harvested from Numdam

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u𝒮 ' of (H-λ)u=0, where H is a many-body hamiltonian H=Δ+V, Δ0, V= a V a , and λ is not a threshold of H, under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order -1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the set of singularities of u is a union of maximally extended broken bicharacteristics of H. These are curves in the characteristic variety of H, which can be quite complicated due to the existence of bound states. We use this result to describe the wave front relation of the S-matrices. Here we only present the statement of the results and sketch some of the ideas in proving them, the complete details will appear elsewhere.

Publié le : 1999-01-01
@article{JEDP_1999____A16_0,
     author = {Vasy, Andr\'as},
     title = {Propagation of singularities in many-body scattering in the presence of bound states},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1999},
     pages = {1-20},
     mrnumber = {2000j:81284},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1999____A16_0}
}
Vasy, András. Propagation of singularities in many-body scattering in the presence of bound states. Journées équations aux dérivées partielles,  (1999), pp. 1-20. http://gdmltest.u-ga.fr/item/JEDP_1999____A16_0/

[1] A. Bommier. Propriétés de la matrice de diffusion, 2-amas 2-amas, pour les problèmes à N corps à longue portée. Ann. Inst. Henri Poincaré, 59:237-267, 1993. | Numdam | MR 1276326 | MR 95e:81243 | Zbl 0804.35111

[2] J. Dereziński. Asymptotic completeness of long-range N-body quantum systems. Ann. Math., 138:427-476, 1993. | MR 1240577 | MR 94g:81209 | Zbl 0844.47005

[3] J. Dereziński and C. Gérard. Scattering theory of classical and quantum N-particle systems. Springer, 1997. | MR 1459161 | MR 99d:81172 | Zbl 0899.47007

[4] R. G. Froese and I. Herbst. Exponential bounds and absence of positive eigen-values of N-body Schrödinger operators. Commun. Math. Phys., 87:429-447, 1982. | MR 682117 | MR 85g:35091 | Zbl 0509.35061

[5] R. G. Froese and I. Herbst. A new proof of the Mourre estimate. Duke Math. J., 49:1075-1085, 1982. | MR 683011 | MR 85d:35092 | Zbl 0514.35025

[6] C. Gérard, H. Isozaki, and E. Skibsted. Commutator algebra and resolvent estimates, volume 23 of Advanced studies in pure mathematics, pages 69-82. 1994. | MR 1275395 | MR 95h:35154 | Zbl 0814.35086

[7] C. Gérard, H. Isozaki, and E. Skibsted. N-body resolvent estimates. J. Math. Soc. Japan, 48:135-160, 1996. | MR 1361552 | MR 96j:81131 | Zbl 0851.35101

[8] G. M. Graf. Asymptotic completeness for N-body short range systems : a new proof. Commun. Math. Phys., 132:73-101, 1990. | MR 1069201 | MR 91i:81100 | Zbl 0726.35096

[9] A. Hassell. Distorted plane waves for the 3 body Schrödinger operator. Geom. Funct. Anal., to appear. | MR 1748915 | Zbl 0953.35122

[10] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983.

[11] M. Ikawa, editor. Spectral and scattering theory. Marcel Dekker, 1994. | MR 95c:35006 | Zbl 0798.00016

[12] H. Isozaki. Structures of S-matrices for three body Schrödinger operators. Commun. Math. Phys., 146:241-258, 1992. | MR 93h:81146 | Zbl 0748.35026

[13] H. Isozaki. A generalization of the radiation condition of Sommerfeld for N-body Schrödinger operators. Duke Math. J., 74:557-584, 1994. | MR 95d:81148 | Zbl 0811.35107

[14] H. Isozaki. A uniqueness theorem for the N-body Schrödinger equation and its applications. In Ikawa [11], 1994. | Zbl 0813.35068

[15] H. Isozaki and J. Kitada. Scattering matrices for two-body schrödinger operators. Scient. Papers College Arts and Sci., Tokyo University, 35:81-107, 1985. | Zbl 0615.35065

[16] A. Jensen. Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., 291-1:129-144, 1985. | MR 86k:35119 | Zbl 0577.35089

[17] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. scient. Éc. Norm. Sup., 30:429-497, 1997. | Numdam | MR 98d:58183 | Zbl 0891.35072

[18] R. B. Melrose. Differential analysis on manifolds with corners. In preparation.

[19] R. B. Melrose. Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In Ikawa [11], 1994. | MR 95k:58168 | Zbl 0837.35107

[20] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31:593-617, 1978. | MR 58 #11859 | Zbl 0368.35020

[21] R. B. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity. Inventiones Mathematicae, 124:389-436, 1996. | MR 96k:58230 | Zbl 0855.58058

[22] E. Mourre. Absence of singular continuous spectrum of certain self-adjoint operators. Commun. Math. Phys., 78:391-408, 1981. | MR 82c:47030 | Zbl 0489.47010

[23] P. Perry, I. M. Sigal, and B. Simon. Spectral analysis of N-body Schrödinger operators. Ann. Math., 114:519-567, 1981. | MR 83b:81129 | Zbl 0477.35069

[24] I. M. Sigal and A. Soffer. N-particle scattering problem : asymptotic completeness for short range systems. Ann. Math., 125:35-108, 1987. | MR 88m:81137 | Zbl 0646.47009

[25] I. M. Sigal and A. Soffer. Long-range many-body scattering. Inventiones Math., 99:115-143, 1990. | MR 91e:81114 | Zbl 0702.35197

[26] I. M. Sigal and A. Soffer. Asymptotic completeness of N ≤ 4-particle systems with the Coulomb-type interactions. Duke Math. J., 71:243-298, 1993. | MR 94i:81141 | Zbl 0853.70010

[27] I. M. Sigal and A. Soffer. Asymptotic completeness of N-particle long-range scattering. J. Amer. Math. Soc., 7:307-334, 1994. | MR 94k:81327 | Zbl 0811.35091

[28] E. Skibsted. Smoothness of N-body scattering amplitudes. Reviews in Math. Phys., 4:619-658, 1992. | MR 94i:81142 | Zbl 0781.35047

[29] A. Vasy. Structure of the resolvent for three-body potentials. Duke Math. J., 90:379-434, 1997. | MR 98k:81295 | Zbl 0891.35111

[30] A. Vasy. Propagation of singularities in euclidean many-body scattering in the presence of bound states. In preparation, 1999.

[31] A. Vasy. Propagation of singularities in many-body scattering. Preprint, 1999. | Zbl 01810589

[32] A. Vasy. Scattering matrices in many-body scattering. Commun. Math. Phys., 200:105-124, 1999. | MR 99m:81278 | Zbl 0929.47044

[33] A. Vasy. Propagation of singularities in three-body scattering. Astérisque, To appear. | Zbl 0941.35001

[34] X. P. Wang. Microlocal estimates for N-body Schrödinger operators. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 40:337-385, 1993. | Zbl 0810.35073

[35] D. Yafaev. Radiation conditions and scattering theory for N-particle Hamiltonians. Commun. Math. Phys., 154:523-554, 1993. | MR 95b:81220 | Zbl 0781.35048