Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.
@article{JEDP_1999____A15_0, author = {Unterberger, Andr\'e}, title = {From pseudodifferential analysis to modular form theory}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1999}, pages = {1-11}, mrnumber = {2000h:11038}, mrnumber = {1719006}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_1999____A15_0} }
Unterberger, André. From pseudodifferential analysis to modular form theory. Journées équations aux dérivées partielles, (1999), pp. 1-11. http://gdmltest.u-ga.fr/item/JEDP_1999____A15_0/
[1] Automorphic Forms and Representations, Cambridge Series in Adv. Math. 55, Cambridge, 1996. | MR 97k:11080 | Zbl 0868.11022
,[2] Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-295. | MR 52 #3080 | Zbl 0311.10030
,[3] Scattering Theory for Automorphic Functions, Ann. Math. Studies 87, Princeton Univ. Press, 1976. | MR 58 #27768 | Zbl 0362.10022
, ,[4] Harmonic analysis on symmetric spaces and applications 1, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1985. | MR 87f:22010 | Zbl 0574.10029
,[5] Algebras of Symbols and Modular Forms, J. d'Analyse Math. 68 (1996), 121-143. | MR 97i:11044 | Zbl 0857.43015
, ,