The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.
@article{JEDP_1999____A14_0, author = {Tataru, Daniel}, title = {The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1999}, pages = {1-16}, mrnumber = {2000h:35114}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_1999____A14_0} }
Tataru, Daniel. The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation. Journées équations aux dérivées partielles, (1999), pp. 1-16. http://gdmltest.u-ga.fr/item/JEDP_1999____A14_0/
[1] Equations d'ondes quasilineaires et effet dispersif. preprint.
and .[2] Equations d'ondes quasilineaires et estimations de strichartz. preprint.
and .[3] On Lp - Lp' estimates for the wave-equation. Math. Z., 145(3):251-254, 1975. | Zbl 0321.35052
.[4] Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50-68, 1995. | MR 97a:46047 | Zbl 0849.35064
and .[5] Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal., 63(3):273-294 (1977), 1976. | Zbl 0361.35046
, , and .[6] Endpoint Strichartz estimates. Amer. J. Math., 120(5):955-980, 1998. | MR 2000d:35018 | Zbl 0922.35028
and .[7] Counterexamples to local existence for semi-linear wave equations. Amer. J. Math., 118(1):1-16, 1996. | MR 97b:35124 | Zbl 0855.35080
.[8] Counterexamples to local existence for quasilinear wave equations. Math. Res. Lett., 5(5):605-622, 1998. | MR 2000a:35171 | Zbl 0932.35149
.[9] Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65-130, 1993. | Zbl 0776.58037
, , and .[10] Singularités analytiques microlocales. In Astérisque, 95, pages 1-166. Soc. Math. France, Paris, 1982. | MR 84m:58151 | Zbl 0524.35007
.[11] Function spaces associated to global I-Lagrangian manifolds. In Structure of solutions of differential equations (Katata/Kyoto, 1995), pages 369-423. World Sci. Publishing, River Edge, NJ, 1996. | Zbl 0889.46027
.[12] A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998. | Numdam | Zbl 0974.35068
.[13] On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729-737, 1994. | MR 95h:35156 | Zbl 0832.35018
and .[14] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705-714, 1977. | MR 58 #23577 | Zbl 0372.35001
.[15] On the equation ∇u = |⎕u|2 in 5 + 1 dimensions. preprint, http://www.math.nwu/tataru/nlw.
.[16] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. preprint, http://www.math.nwu/tataru/nlw.
.[17] Strichartz estimates for operators with nonsmooth coefficients iii. preprint, http://www.math.nwu/tataru/nlw.
.[18] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, http://www.math.nwu/tataru/nlw.
.[19] Pseudodifferential operators and nonlinear PDE. Birkhäuser Boston Inc., Boston, MA, 1991. | Zbl 0746.35062
.