In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of isoperimetric profile. The main point is to connect the decay of the norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?
@article{JEDP_1998____A2_0,
author = {Coulhon, Thierry},
title = {Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays},
journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
year = {1998},
pages = {1-12},
zbl = {01808712},
language = {en},
url = {http://dml.mathdoc.fr/item/JEDP_1998____A2_0}
}
Coulhon, Thierry. Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays. Journées équations aux dérivées partielles, (1998), pp. 1-12. http://gdmltest.u-ga.fr/item/JEDP_1998____A2_0/
[1] , , , , Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. | MR 97c:46039 | Zbl 0857.26006
[2] , Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994.
[3] , Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. | MR 97m:58198 | Zbl 0884.58088
[4] , Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. | MR 96i:53040 | Zbl 0847.53022
[5] , Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. | MR 97a:46040 | Zbl 0859.58009
[6] , Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. | MR 97j:47055 | Zbl 0887.58009
[7] , Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. | Numdam | MR 99e:58175 | Zbl 0903.58055
[8] , Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P.
[9] , , On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. | MR 98e:58159 | Zbl 0920.58064
[10] , , Manifolds with big heat kernels, preprint.
[11] , , Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. | MR 95e:58170 | Zbl 0826.53035
[12] , , Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. | MR 94g:58263 | Zbl 0782.53066
[13] , , Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. | MR 96m:53035 | Zbl 0845.58054
[14] , , Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. | Zbl 01718931
[15] , The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. | MR 92h:58189 | Zbl 0776.58035
[16] , Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. | MR 96b:58107 | Zbl 0810.58040
[17] , Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. | MR 96f:58155 | Zbl 0829.58041
[18] , , Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. | Zbl 0934.43001