In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of isoperimetric profile. The main point is to connect the decay of the norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?
@article{JEDP_1998____A2_0, author = {Coulhon, Thierry}, title = {Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1998}, pages = {1-12}, zbl = {01808712}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_1998____A2_0} }
Coulhon, Thierry. Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays. Journées équations aux dérivées partielles, (1998), pp. 1-12. http://gdmltest.u-ga.fr/item/JEDP_1998____A2_0/
[1] Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. | MR 97c:46039 | Zbl 0857.26006
, , , ,[2] Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994.
,[3] Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. | MR 97m:58198 | Zbl 0884.58088
,[4] Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. | MR 96i:53040 | Zbl 0847.53022
,[5] Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. | MR 97a:46040 | Zbl 0859.58009
,[6] Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. | MR 97j:47055 | Zbl 0887.58009
,[7] Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. | Numdam | MR 99e:58175 | Zbl 0903.58055
,[8] Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P.
,[9] On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. | MR 98e:58159 | Zbl 0920.58064
, ,[10] Manifolds with big heat kernels, preprint.
, ,[11] Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. | MR 95e:58170 | Zbl 0826.53035
, ,[12] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. | MR 94g:58263 | Zbl 0782.53066
, ,[13] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. | MR 96m:53035 | Zbl 0845.58054
, ,[14] Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. | Zbl 01718931
, ,[15] The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. | MR 92h:58189 | Zbl 0776.58035
,[16] Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. | MR 96b:58107 | Zbl 0810.58040
,[17] Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. | MR 96f:58155 | Zbl 0829.58041
,[18] Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. | Zbl 0934.43001
, ,