On local and global analytic and Gevrey hypoellipticity
Christ, Michael
Journées équations aux dérivées partielles, (1995), p. 1-7 / Harvested from Numdam
Publié le : 1995-01-01
@article{JEDP_1995____A9_0,
     author = {Christ, Michael},
     title = {On local and global analytic and Gevrey hypoellipticity},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1995},
     pages = {1-7},
     mrnumber = {96h:35029},
     zbl = {0881.35026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1995____A9_0}
}
Christ, Michael. On local and global analytic and Gevrey hypoellipticity. Journées équations aux dérivées partielles,  (1995), pp. 1-7. http://gdmltest.u-ga.fr/item/JEDP_1995____A9_0/

[BG] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bulletin AMS 78 (1972), 483-486. | MR 45 #5567 | Zbl 0276.35023

[C1] M. Christ, Analytic hypoellipticity, representations of nilpotent groups, and a nonlinear eigenvalue problem, Duke Math. J. 72 (1993), 595-639. | MR 94k:35075 | Zbl 0802.35025

[C2] M. Christ, A necessary condition for analytic hypoellipticity, Math. Research Letters 1 (1994), 241-248. | MR 94m:35068 | Zbl 0841.35026

[C3] M. Christ, Global analytic regularity in the presence of symmetry, Math. Research Letters 1 (1994), 599-563. | Zbl 0841.35027

[C4] M. Christ, The Szegö projection need not preserve global analyticity, Annals of Math. (to appear). | Zbl 0851.32024

[C5] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. Partial Differential Equations 16 (1991), 1695-1707. | MR 92k:35056 | Zbl 0762.35017

[C6] M. Christ, Gevrey and analytic hypoellipticity in dimension two, in preparation.

[CG] M. Christ and D. Geller, Counterexamples to analytic hypoellipticity for domains of finite type, Annals of Math. 235 (1992), 551-566. | MR 93i:35034 | Zbl 0758.35024

[CH] P. Cordaro and A. A. Himonas, Global analytic hypoellipticity of a class of degenerate elliptic operators on the torus, Mathematical Research Letters 1 (1994). | MR 95j:35048 | Zbl 0836.35036

[DZ] M. Derridj and C. Zuily, Régularité analytique et Gevrey pour des classes d'opérateurs elliptiques paraboliques dégénérés du second ordre, Astérisque 2,3 (1973), 371-381. | MR 52 #14597 | Zbl 0303.35027

[FS] A. Friedman and M. Shinbrot, Nonlinear eigenvalue problems, Acta Math. 121 (1968), 77-128. | Zbl 0162.45704

[GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35-51. | Zbl 0581.35009

[HH] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511. | MR 92i:35031 | Zbl 0745.35011

[He] B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Eq. 44 (1982), 460-481. | MR 84c:35026 | Zbl 0458.35019

[H1] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983. | Zbl 0521.35002

[H2] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR 36 #5526 | Zbl 0156.10701

[Ke] M. V. Keldysh, On the completeness of the eigenfunctions of classes of non-selfadjoint linear operators, Russian Math. Surveys 26 (1971), 15-44. | Zbl 0235.47009

[K] J. J. Kohn, Estimates for ∂b on pseudoconvex CR manifolds, Proc. Symp. Pure Math. 43 (1985), 207-217. | MR 87c:32025 | Zbl 0571.58027

[M1] G. Métivier, Une classe d'opérateurs non hypoélliptiques analytiques, Indiana Math. J. 29 (1980), 823-860. | MR 82a:35029 | Zbl 0455.35041

[M2] G. Métivier, Non-hypoellipticité analytique pour D2x + (x2 + y2)D2y, Comptes Rendus Acad. Sci. Paris 292 (1981), 401-404. | MR 82b:35039 | Zbl 0481.35033

[PR] Pham The Lai and D. Robert, Sur un problème aux valeurs propres non linéaire, Israel J. Math. 36 (1980), 169-186. | MR 83b:35132 | Zbl 0444.35065

[RS] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. | MR 55 #9171 | Zbl 0346.35030

[Ta1] D. Tartakoff, Local analytic hypoellipticity for □b on non-degenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. USA 75 (1978), 3027-3028. | MR 80g:58045 | Zbl 0384.35020

[Ta2] D. Tartakoff, On the local real analyticity of solutions to □b and the ∂-Neumann problem, Acta Math. 145 (1980), 117-204. | MR 81k:35033 | Zbl 0456.35019

[Tp] J.-M. Trepreau, Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. Partial Differential Equations 9 (1984), 1119-1146. | MR 86m:58144 | Zbl 0566.35027

[Tr1] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂-Neumann problem, Comm. Partial Differential Equations 3 (1978), 475-642. | MR 58 #11867 | Zbl 0384.35055

[Tr2] F. Treves, Analytic-hypoelliptic partial differential equations of principal type, Comm. Pure Appl Math. 24 (1971), 537-570. | MR 45 #5569 | Zbl 0222.35014

[Y] C.-C. Yu, Nonlinear eigenvalues and analytic-hypoellipticity, 1995 UCLA Ph. D. dissertation (to appear).