@article{JEDP_1995____A14_0, author = {Johnsen, Jon}, title = {Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1995}, pages = {1-10}, mrnumber = {96j:35078}, zbl = {0948.35502}, mrnumber = {1360483}, language = {en}, url = {http://dml.mathdoc.fr/item/JEDP_1995____A14_0} }
Johnsen, Jon. Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces. Journées équations aux dérivées partielles, (1995), pp. 1-10. http://gdmltest.u-ga.fr/item/JEDP_1995____A14_0/
[1] Boundary problems for pseudo-differential operators. Acta Math., 126 : 11-51, 1971. | MR 53 #11674 | Zbl 0206.39401
.[2] On the Spaces Fspq of Triebel-Lizorkin Type : Pointwise Multipliers and Spaces on Domains. Math. Nachr., 125 : 29-68, 1986. | MR 88e:46029 | Zbl 0617.46036
.[3] Functional Calculus of Pseudo-Differential Boundary Problems, volume 65 of Progress in Mathematics. Birkhäuser, Boston, 1986. | MR 88f:35002 | Zbl 0622.35001
.[4] Pseudo-differential boundary problems in Lp-spaces. Comm. Part. Diff. Equations, 15 : 289-340, 1990. | MR 91c:47108 | Zbl 0723.35091
.[5] Parabolic pseudo-differential boundary problems and applications. In L. Cattabriga and L. Rodino, editors, Microlocal analysis and applications, Montecatini Terme, Italy, July 3-11, 1989, volume 1495 of Lecture Notes in Mathematics, Berlin, 1991. Springer. | Zbl 0763.35116
.[6] A global calculus of parameter-dependent pseudodifferential boundary problems in Lp Sobolev spaces. Acta Math., 171 : 165-229, 1993. | MR 94m:35328 | Zbl 0811.35176
and .[7] Boundary value problems for the non-stationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand., 69 : 217-290, 1991. | MR 93e:35082 | Zbl 0766.35034
and .[8] Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces. (to appear in Math. Scand.). | Zbl 0873.35023
.[9] Pointwise multiplication of Besov and Triebel-Lizorkin spaces. (to appear in Math. Nachr.). | Zbl 0839.46026
.[10] Regularity properties of semi-linear boundary problems in Lp-related spaces. (in preparation).
.[11] The stationary Navier-Stokes equations in Lp-related spaces. PhD thesis, University of Copenhagen, Denmark, 1993. Ph.D.-series 1.
.[12] The Sharp Apriori Estimates for Some Superlinear Degenerate Elliptic Problems. In Schmeisser, H.-J. and Triebel, H., editor, Function Spaces, Differential Operators and Nonlinear Problems, volume 133 of Teubner-Texte zur Mathematik, pages 200-217, Leipzig, 1993. Teubner Verlagsgesellschaft. | MR 94i:35033 | Zbl 0838.35018
.[13] Navier-Stokes Equations, Theory and Numerical Analysis. Elsevier Science Publishers B.V., Amsterdam, 1984. (Third edition). | Zbl 0568.35002
.[14] Theory of function spaces, volume 78 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1983. | MR 86j:46026 | Zbl 0546.46027
.[15] Theory of function spaces II, volume 84 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1992. | MR 93f:46029 | Zbl 0763.46025
.[16] A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 33 : 131-174, 1986. | MR 87j:35393 | Zbl 0608.47058
.