Stable solutions and their spatial structure of the Ginzburg-Landau equation
Morita, Yoshihisa
Journées équations aux dérivées partielles, (1995), p. 1-5 / Harvested from Numdam
Publié le : 1995-01-01
@article{JEDP_1995____A12_0,
     author = {Morita, Yoshihisa},
     title = {Stable solutions and their spatial structure of the Ginzburg-Landau equation},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1995},
     pages = {1-5},
     mrnumber = {96j:35237},
     zbl = {0877.35049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1995____A12_0}
}
Morita, Yoshihisa. Stable solutions and their spatial structure of the Ginzburg-Landau equation. Journées équations aux dérivées partielles,  (1995), pp. 1-5. http://gdmltest.u-ga.fr/item/JEDP_1995____A12_0/

[1] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR 95c:58044 | Zbl 0802.35142

[2] R.G. Casten and C.J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eqns., vol.27, 1978, pp.266-273. | MR 80a:35064 | Zbl 0338.35055

[3] N. Dancer, On domain variation for some non-isolated sets of solutions and a problem of Jimbo and Morita, in preparation.

[4] V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. eksper. teor. Fiz. 20 (1950) 1064-1082.

[5] J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Math. Surveys and Monographs 25 A.M.S., 1988. | MR 89g:58059 | Zbl 0642.58013

[6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York 1981. | MR 83j:35084 | Zbl 0456.35001

[7] S. Jimbo and Y. Morita, Stability of Non-constant Steady State Solutions to a Ginzburg-Landau Equation in Higher Space Dimensions, Nonlinear Analysis: T.M.A., Vol.22, 1994, pp. 753-770. | MR 95i:35034 | Zbl 0798.35019

[8] S. Jimbo and Y. Morita, Ginzburg-Landau equation and stable solutions in a rotational domain, to appear in SIAM J. of Math. Anal. | Zbl 0865.35016

[9] S. Jimbo and Y. Morita, Stable Solutions with Zeros to the Ginzburg-Landau Equation with Neumann Boundary Condition, in preparation. | Zbl 0853.35119

[10] S. Jimbo, Y. Morita and J. Zhai, Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain, to appear in Comm. in P.D.E. | Zbl 0841.35041

[11] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Pub. of RIMS Kyoto Univ., vol. 15, 1979, pp. 401-454. | MR 80m:35046 | Zbl 0445.35063