@article{JEDP_1993____A2_0,
author = {Harg\'e, Thierry},
title = {Diffraction pour l'\'equation de la chaleur},
journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
year = {1993},
pages = {1-9},
mrnumber = {95a:35052},
zbl = {0844.35038},
language = {fr},
url = {http://dml.mathdoc.fr/item/JEDP_1993____A2_0}
}
Hargé, Thierry. Diffraction pour l'équation de la chaleur. Journées équations aux dérivées partielles, (1993), pp. 1-9. http://gdmltest.u-ga.fr/item/JEDP_1993____A2_0/
[Ag] : Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. | Zbl 0503.35001
[Bu] : Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968.
[Ha] : Thèse Orsay.
[Ha] : Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. | Zbl 0805.35039
[Hs] : Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. | MR 90f:35032 | Zbl 0685.58035
[IK] et : Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. | MR 89i:35023 | Zbl 0647.60085
[Le] : Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). | MR 86d:58116 | Zbl 0559.35019
[Mi] : Morse Theory, 67-76.
[NS] et : Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. | MR 92a:35075 | Zbl 0694.35075
[VdB] : A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. | MR 93k:35116 | Zbl 0801.35035