The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets
Gromov, Mikhael ; Shubin, Mikhail A.
Journées équations aux dérivées partielles, (1993), p. 1-13 / Harvested from Numdam
Publié le : 1993-01-01
@article{JEDP_1993____A18_0,
     author = {Gromov, Mikhael and Shubin, Mikhail A.},
     title = {The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     year = {1993},
     pages = {1-13},
     mrnumber = {94k:58143},
     language = {en},
     url = {http://dml.mathdoc.fr/item/JEDP_1993____A18_0}
}
Gromov, Mikhael; Shubin, Mikhail A. The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets. Journées équations aux dérivées partielles,  (1993), pp. 1-13. http://gdmltest.u-ga.fr/item/JEDP_1993____A18_0/

[G-H] P. Griffiths, J. Harris : Principles of algebraic geometry. John Wiley & Sons, New York e.a., 1978. | MR 80b:14001 | Zbl 0408.14001

[G-S] M. Gromov, M.A. Shubin : The Riemann-Roch theorem for elliptic operators. In : I.M.Gelfand Seminar, part 1, American Math. Soc., Providence, R.I., 1993. (Also Preprint ETH, Zürich, 1991.) | MR 94j:58163 | Zbl 0802.58051

[H] L. Hörmander : The analysis of linear partial differential operators, vol. III. Springer-Verlag, Berlin e.a., 1985. | Zbl 0601.35001

[S] M.A. Shubin : Pseudodifferential operators and spectral theory. Springer, Berlin e.a., 1987. | MR 88c:47105 | Zbl 0616.47040

[St] E. Stein : Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970. | MR 44 #7280 | Zbl 0207.13501

[T] H. Triebel : Theory of function spaces. Birkhäuser, Boston, 1983. | Zbl 0546.46027