@article{JEDP_1982____A16_0, author = {Bachelot, Alain}, title = {Op\'erateurs de convolution d\'efinis \`a partir d'une forme quadratique}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, year = {1982}, pages = {1-8}, zbl = {0536.47037}, language = {fr}, url = {http://dml.mathdoc.fr/item/JEDP_1982____A16_0} }
Bachelot, Alain. Opérateurs de convolution définis à partir d'une forme quadratique. Journées équations aux dérivées partielles, (1982), pp. 1-8. http://gdmltest.u-ga.fr/item/JEDP_1982____A16_0/
[1] Problème inverse de diffusion non linéaire, C.R. Acad. Sci. Paris, ser. A. 293 (1981), 121-124. | MR 83d:35130 | Zbl 0475.35070
:[2] Inverse scattering problem for non linear Klein Gordon equation, à paraître dans "Contributions to non linear partial differential equations" dans la série Research Notes in Mathematics de Pitman Books Limited. | Zbl 0532.35051
:[3] On a non linear scattering operator ; Comm. Pure Appl. Math. XXV, (1972), 1-31. | MR 46 #2239 | Zbl 0228.35055
, :[4] non linear scattering theory at low energy. J. Func. Anal. 41 (1981), 110-133. | MR 83b:47074a | Zbl 0466.47006
:[5] Fourier transforms and Non-Compact Rotation Group. Indiana Univ. Math. J. 24 (1974), 499-527. | MR 52 #1178 | Zbl 0295.42015
:[6] Restrictions of Fourier transforms to quadartic surfaces and decay of solutions of wave equations Duke Math. J. 44, (1977), 705-714. | MR 58 #23577 | Zbl 0372.35001
: