We consider a recently defined notion of k-abelian equivalence of words by concentrating on avoidance problems. The equivalence class of a word depends on the numbers of occurrences of different factors of length k for a fixed natural number k and the prefix of the word. We have shown earlier that over a ternary alphabet k-abelian squares cannot be avoided in pure morphic words for any natural number k. Nevertheless, computational experiments support the conjecture that even 3-abelian squares can be avoided over ternary alphabets. In this paper we establish the first avoidance result showing that by choosing k to be large enough we have an infinite k-abelian square-free word over three letter alphabet. In addition, this word can be obtained as a morphic image of a pure morphic word.
@article{ITA_2014__48_3_307_0, author = {Huova, Mari}, title = {Existence of an infinite ternary 64-abelian square-free word}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {48}, year = {2014}, pages = {307-314}, doi = {10.1051/ita/2014012}, mrnumber = {3302490}, zbl = {1297.68192}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2014__48_3_307_0} }
Huova, Mari. Existence of an infinite ternary 64-abelian square-free word. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) pp. 307-314. doi : 10.1051/ita/2014012. http://gdmltest.u-ga.fr/item/ITA_2014__48_3_307_0/
[1] Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR 1997038 | Zbl 1086.11015
and ,[2] Finite-Repetition threshold for infinite ternary words, in 8th International Conference WORDS 2011, edited by P. Ambroz, S. Holub and Z. Masáková. EPTCS 63 (2011) 37-43.
and ,[3] Unavoidable binary patterns. Acta Informatica 30 (1993) 385-395. | MR 1227889 | Zbl 0790.68096
,[4] Combinatorics of words, in vol. 1 of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer (1997) 329-438. | MR 1469998 | Zbl 0866.68057
and ,[5] Alternating iteration of morphisms and the Kolakoski sequence, in Lindenmayer Systems, edited by G. Rozenberg and A. Salomaa. Springer (1992) 93-106. | MR 1226686 | Zbl 0766.68073
, and ,[6] Open problems in pattern avoidance. Amer. Math. Monthly 100 (1993) 790-793. | MR 1542406 | Zbl 0798.68139
,[7] Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory Ser. A 27 (1979) 181-185. | MR 542527 | Zbl 0437.05011
,[8] Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179 (1968) 1268-1271; English translation in Soviet Math. Dokl. 9 (1968) 536-539. | MR 234842 | Zbl 0186.01504
,[9] On Unavoidability of k-abelian Squares in Pure Morphic Words. J. Integer Sequences, being bublished. | Zbl 1285.68135
and ,[10] Problems in between words and abelian words: k-abelian avoidability, in Formal and Natural Computing Honoring the 80th Birthday of Andrzej Ehrenfeucht, edited by G. Rozenberg and A. Salomaa. Theoret. Comput. Sci. 454 (2012) 172-177. | MR 2966632 | Zbl 1280.68149
, and ,[11] Local squares, periodicity and finite automata, in Rainbow of Computer Science, edited by C.S. Calude, G. Rozenberg and A. Salomaa. Vol. 6570 of Lect. Notes Comput. Sci. Springer (2011) 90-101. | MR 2805552 | Zbl pre05900368
, , and ,[12] Abelian squares are avoidable on 4 letters, in Proc. ICALP 1992, edited by W. Kuich. Vol. 623 of Lect. Notes Comput. Sci. Springer (1992) 41-52. | MR 1250629
,[13] Combinatorics on words, Addison-Wesley (1983). | MR 675953 | Zbl 0514.20045
,[14] Algebraic combinatorics on words. Cambridge University Press (2002). | MR 1905123 | Zbl 1221.68183
,[15] 5-abelian cubes are avoidable on binary alphabets, in the conference the 14th Mons Days of Theoretical Computer Science (2012). | Zbl pre06182460
and ,[16] Non-repetitive sequences. Proc. Cambridge Philos. Soc. 68 (1970) 267-274. | MR 265173 | Zbl 0237.05010
,[17] Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1-22. | JFM 39.0283.01
,[18] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. | JFM 44.0462.01
,