Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux-Rauzy substitutions.
@article{ITA_2014__48_3_249_0, author = {Berth\'e, Val\'erie and Jolivet, Timo and Siegel, Anne}, title = {Connectedness of fractals associated with Arnoux-Rauzy substitutions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {48}, year = {2014}, pages = {249-266}, doi = {10.1051/ita/2014008}, mrnumber = {3302487}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2014__48_3_249_0} }
Berthé, Valérie; Jolivet, Timo; Siegel, Anne. Connectedness of fractals associated with Arnoux-Rauzy substitutions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) pp. 249-266. doi : 10.1051/ita/2014008. http://gdmltest.u-ga.fr/item/ITA_2014__48_3_249_0/
[1] Rational numbers with purely periodic β-expansion. Bull. London Math. Soc. 42 (2010) 538-552. | MR 2651949 | Zbl 1211.11010
, , and ,[2] Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1-56. | MR 1477538 | Zbl 0892.58019
,[3] Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269-312 (electronic). | MR 2183177 | Zbl 1162.11366
and ,[4] Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 155 (2008) 377-419. | MR 2461585 | Zbl 1190.11005
, , and ,[5] Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR 1116845 | Zbl 0789.28011
and ,[6] Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci. 380 (2007) 251-265. | MR 2330996 | Zbl 1119.68136
, , and ,[7] Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305-349. | Numdam | MR 1906478 | Zbl 1017.11006
, and ,[8] Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319 (2004) 145-176. | MR 2074952 | Zbl 1068.37004
, and ,[9] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | MR 1838930 | Zbl 1007.37001
and ,[10] Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | MR 2262174 | Zbl 1152.37011
and ,[11] The branch locus for one-dimensional Pisot tiling spaces. Fund. Math. 204 (2009) 215-240. | MR 2520153 | Zbl 1185.37013
, and ,[12] Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst. 33 (2013) 579-597. | MR 2975125 | Zbl 1291.37024
, and ,[13] Selfdual substitutions in dimension one, European J. Combin. 33 (2012) 981-1000. | MR 2904970 | Zbl 1252.68164
, , and ,[14] Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). | MR 2742574 | Zbl 1197.68006
and ,[15] Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333-364. | MR 2180244 | Zbl 1156.37301
, and ,[16] Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7 (2012) 173-197. | MR 2943167 | Zbl pre06336941
, and ,[17] A study of Jacobi-Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci. 502 (2013) 118-142. | MR 3101696 | Zbl 1296.68113
, , and ,[18] Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978) 130-132. | MR 474415 | Zbl 0417.58011
,[19] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean-René Chazottes. Springer-Verlag, Berlin (2008). | MR 2423393 | Zbl 1172.37001
,[20] Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | MR 2032327 | Zbl 1031.37015
,[21] Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | MR 1852097 | Zbl 1142.37302
and ,[22] Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble 56 (2006) 2249-2270. | Numdam | MR 2290780 | Zbl 1138.68045
and ,[23] Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier 58 (2008) 1983-2005. | Numdam | MR 2473626 | Zbl 1151.37013
, and ,[24] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | MR 1799745 | Zbl 1004.37008
, and ,[25] Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | MR 1659624 | Zbl 0924.20040
and ,[26] Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci. 17 (2006) 575-599. | MR 2234803 | Zbl 1096.68125
,[27] Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition 42 (2009) 2229-2238. | MR 2503454 | Zbl 1176.68180
,[28] Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Numdam | MR 2145576 | Zbl 1075.11007
and ,[29] Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 124 (2006) 1-15. | MR 2262136 | Zbl 1116.28009
and ,[30] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16 (1993) 441-472. | MR 1247666 | Zbl 0805.11056
and ,[31] Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17 (1994) 33-58. | MR 1279568 | Zbl 0805.52011
and ,[32] Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | MR 2254640 | Zbl 1143.37013
and ,[33] An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). | MR 1369092 | Zbl 1106.37301
and ,[34] Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). | MR 1475463 | Zbl 0874.20040
,[35] Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95 (2000) 195-224. | MR 1793161 | Zbl 0968.28005
,[36] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03 | MR 745
and ,[37] Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc. 351 (1999) 3315-3349. | MR 1615950 | Zbl 0984.11008
,[38] Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). | MR 1970385
,[39] Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). | MR 2590264 | Zbl 1225.11001
,[40] Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | MR 667748 | Zbl 0522.10032
,[41] Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). | Zbl 1079.51513
,[42] Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000).
,[43] Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). | Numdam | MR 2721985 | Zbl 1229.28021
and ,[44] The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math. 32 (2004) 736-753. | MR 2053843 | Zbl 1082.68092
, and ,[45] Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989).
,