Connectedness of fractals associated with Arnoux-Rauzy substitutions
Berthé, Valérie ; Jolivet, Timo ; Siegel, Anne
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014), p. 249-266 / Harvested from Numdam

Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux-Rauzy substitutions.

Publié le : 2014-01-01
DOI : https://doi.org/10.1051/ita/2014008
Classification:  68R15,  37B10
@article{ITA_2014__48_3_249_0,
     author = {Berth\'e, Val\'erie and Jolivet, Timo and Siegel, Anne},
     title = {Connectedness of fractals associated with Arnoux-Rauzy substitutions},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {48},
     year = {2014},
     pages = {249-266},
     doi = {10.1051/ita/2014008},
     mrnumber = {3302487},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2014__48_3_249_0}
}
Berthé, Valérie; Jolivet, Timo; Siegel, Anne. Connectedness of fractals associated with Arnoux-Rauzy substitutions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) pp. 249-266. doi : 10.1051/ita/2014008. http://gdmltest.u-ga.fr/item/ITA_2014__48_3_249_0/

[1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic β-expansion. Bull. London Math. Soc. 42 (2010) 538-552. | MR 2651949 | Zbl 1211.11010

[2] R.L. Adler, Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1-56. | MR 1477538 | Zbl 0892.58019

[3] S. Akiyama and N. Gjini, Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269-312 (electronic). | MR 2183177 | Zbl 1162.11366

[4] S. Akiyama, G. Barat, V. Berthé and A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 155 (2008) 377-419. | MR 2461585 | Zbl 1190.11005

[5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR 1116845 | Zbl 0789.28011

[6] P. Arnoux, V. Berthé, T. Fernique and D. Jamet, Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci. 380 (2007) 251-265. | MR 2330996 | Zbl 1119.68136

[7] P. Arnoux, V. Berthé and S. Ito, Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305-349. | Numdam | MR 1906478 | Zbl 1017.11006

[8] P. Arnoux, V. Berthé and A. Siegel, Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319 (2004) 145-176. | MR 2074952 | Zbl 1068.37004

[9] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | MR 1838930 | Zbl 1007.37001

[10] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | MR 2262174 | Zbl 1152.37011

[11] M. Barge, B. Diamond and R. Swanson, The branch locus for one-dimensional Pisot tiling spaces. Fund. Math. 204 (2009) 215-240. | MR 2520153 | Zbl 1185.37013

[12] M. Barge, S. Štimac and R.F. Williams, Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst. 33 (2013) 579-597. | MR 2975125 | Zbl 1291.37024

[13] V. Berthé, D. Frettlöh, and V. Sirvent, Selfdual substitutions in dimension one, European J. Combin. 33 (2012) 981-1000. | MR 2904970 | Zbl 1252.68164

[14] V. Berthé and M. Rigo, Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). | MR 2742574 | Zbl 1197.68006

[15] V. Berthé, S. Ferenczi and L.Q. Zamboni, Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333-364. | MR 2180244 | Zbl 1156.37301

[16] V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7 (2012) 173-197. | MR 2943167 | Zbl pre06336941

[17] V. Berthé, A. Lacasse, G. Paquin and X. Provençal, A study of Jacobi-Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci. 502 (2013) 118-142. | MR 3101696 | Zbl 1296.68113

[18] R. Bowen, Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978) 130-132. | MR 474415 | Zbl 0417.58011

[19] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean-René Chazottes. Springer-Verlag, Berlin (2008). | MR 2423393 | Zbl 1172.37001

[20] V. Canterini, Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | MR 2032327 | Zbl 1031.37015

[21] V. Canterini and A. Siegel, Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | MR 1852097 | Zbl 1142.37302

[22] J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble 56 (2006) 2249-2270. | Numdam | MR 2290780 | Zbl 1138.68045

[23] J. Cassaigne, S. Ferenczi and A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier 58 (2008) 1983-2005. | Numdam | MR 2473626 | Zbl 1151.37013

[24] J. Cassaigne, S. Ferenczi and L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | MR 1799745 | Zbl 1004.37008

[25] H. Ei and S. Ito, Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | MR 1659624 | Zbl 0924.20040

[26] T. Fernique, Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci. 17 (2006) 575-599. | MR 2234803 | Zbl 1096.68125

[27] T. Fernique, Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition 42 (2009) 2229-2238. | MR 2503454 | Zbl 1176.68180

[28] J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Numdam | MR 2145576 | Zbl 1075.11007

[29] P. Hubert and A. Messaoudi, Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 124 (2006) 1-15. | MR 2262136 | Zbl 1116.28009

[30] S. Ito and M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16 (1993) 441-472. | MR 1247666 | Zbl 0805.11056

[31] S. Ito and M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17 (1994) 33-58. | MR 1279568 | Zbl 0805.52011

[32] S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | MR 2254640 | Zbl 1143.37013

[33] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). | MR 1369092 | Zbl 1106.37301

[34] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). | MR 1475463 | Zbl 0874.20040

[35] A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95 (2000) 195-224. | MR 1793161 | Zbl 0968.28005

[36] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03 | MR 745

[37] B. Praggastis, Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc. 351 (1999) 3315-3349. | MR 1615950 | Zbl 0984.11008

[38] N.P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). | MR 1970385

[39] M. Queffélec, Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). | MR 2590264 | Zbl 1225.11001

[40] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | MR 667748 | Zbl 0522.10032

[41] J.-P. Reveillès, Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). | Zbl 1079.51513

[42] A. Siegel, Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000).

[43] A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). | Numdam | MR 2721985 | Zbl 1229.28021

[44] B. Tan, Z.-X. Wen and Y. Zhang, The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math. 32 (2004) 736-753. | MR 2053843 | Zbl 1082.68092

[45] W. Thurston, Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989).