Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum finite automata with very little quantumness (so-called semi-quantum one- and two-way finite automata); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.
@article{ITA_2014__48_2_187_0, author = {Zheng, Shenggen and Gruska, Jozef and Qiu, Daowen}, title = {On the state complexity of semi-quantum finite automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {48}, year = {2014}, pages = {187-207}, doi = {10.1051/ita/2014003}, mrnumber = {3302484}, zbl = {1292.81027}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2014__48_2_187_0} }
Zheng, Shenggen; Gruska, Jozef; Qiu, Daowen. On the state complexity of semi-quantum finite automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) pp. 187-207. doi : 10.1051/ita/2014003. http://gdmltest.u-ga.fr/item/ITA_2014__48_2_187_0/
[1] Dense quantum coding and quantum automata. J. ACM 49 (2002) 496-511. | MR 2146458
, , and ,[2] The complexity of probabilistic versus deterministic finite automata, Proc. of the International Symposium on Algorithms and Computation (ISAAC96). Lect. Notes Comput. Sci. 1178 (1996) 233-239. | MR 1615194 | Zbl 1036.68510
,[3] Two-way finite automata with quantum and classical states. Theoret. Comput. Sci. 287 (2002) 299-311. | MR 1944456 | Zbl 1061.68047
and ,[4] One-way quantum finite automata: strengths, weaknesses and generalizations, in: Proc. of the 39th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Palo Alfo, California, USA (1998) 332-341.
and ,[5] Improved constructions of quantum automata. Theoret. Comput. Sci. 410 (2009) 1916-1922. | MR 2517650 | Zbl 1163.68020
and ,[6] Superiority of exact quantum automata for promise problems. Inform. Process. Lett. 112 (2012) 289-291. | MR 2879167 | Zbl 1237.68082
and ,[7] Small size quantum automata recognizing some regular languages. Theoret. Comput. Sci. 340 (2005) 394-407. | MR 2150762 | Zbl 1087.68047
, and ,[8] A. Bertoni, C. Mereghetti and b. Palano. Some formal tools for analyzing quantum automata. Theoret. Comput. Sci. 356 (2006) 14-25. | MR 2217824 | Zbl 1160.68375
[9] State-complexity of finite-state devices, state compressibility and incompressibility. Math. Systems Theory 26 (1993) 237-269. | MR 1209997 | Zbl 0779.68061
,[10] Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31 (2002) 1456-1478. | MR 1936654 | Zbl 1051.68062
and ,[11] Quantum vs. classical communication and computation. Proc. of 30th Annual ACM Symposium Theory Computing (1998) 63-68. | MR 1731563 | Zbl 1028.68056
, and ,[12] Nonlocality and Communication Complexity. Rev. Mod. Phys. 82 (2010) 665-698
, , and ,[13] Finite Automata and Unary Languages. Theoret. Comput. Sci. 47 (1986) 149-158. | MR 881208 | Zbl 0638.68096
,[14] A time-complexity gap for two-way probabilistic finite state automata. SIAM J. Comput. 19 (1990) 1011-1023. | MR 1069095 | Zbl 0711.68075
and ,[15] On the growth of the number of states in result of determinization of probabilistic finite automata. Automatic Control Comput. Sci. 3 (1982) 39-42.
,[16] Non-constructive methods for finite probabilistic automata. Int. J. Found. Comput. Sci. 19 (2008) 565-580. | MR 2417956 | Zbl 1155.68036
,[17] Improved constructions of mixed state quantum automata. Theoret. Comput. Sci. 410 (2009) 1923-1931. | MR 2517651 | Zbl 1163.68022
, and ,[18] An Introduction to Probability Theory and its Applications, vol. I. Wiley, New York, 1967. | Zbl 0039.13201
,[19] Quantum Computing. McGraw-Hill, London (1999). | MR 1978991
,[20] Descriptional complexity issues in quantum computing. J. Automata Languages Combinatorics 5 (2000) 191-218. | MR 1778471 | Zbl 0965.68021
,[21] Communication complexity of promise problems and their applications to finite automata, arXiv:1309.7739 (2013).
, , and ,[22] Introduction to Automata Theory, Languages, and Computation. Addision-Wesley, New York, 1979. | MR 645539 | Zbl 0980.68066
and ,[23] Compressed Storage of Sparse Finite-State Transducers, Proc. of CIAA, vol. 2214 of Lect. Notes Comput. Sci. (2001) 109-121. | Zbl 1050.68589
,[24] On quantum and probabilistic communication: Las Vegas and one-way protocols. Proc. of the 32th STOC (2000) 644-651. | MR 2115303 | Zbl 1296.68058
,[25] Communication Complexity. Adv. Comput. 44 (1997) 331-360. | Zbl 0869.68048
,[26] On the power of quantum finite state automata, in Proc. of 38th IEEE Annal. Sympos. Found. of Comput. Sci. (1997) 66-75.
and ,[27] Exponential separation of quantum and classical online space complexity, in Proc. of SPAA'06 (2006) 67-73. | Zbl 1183.68292
,[28] State complexity of basic operations combined with reversal, Inf. Comput. 206 (2008) 1178-186. | MR 2440660 | Zbl 1154.68073
, , and ,[29] Two-way automata simulations and unary languages. J. Automata, Languages and Combinatorics 5 (2000) 287-300. | MR 1778478 | Zbl 0965.68043
and ,[30] Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata. RAIRO: ITA 35 (2001) 477-490. | Numdam | MR 1908867 | Zbl 1010.68068
, and ,[31] On the size of one-way quantum finite automata with periodic behaviors. RAIRO: ITA 36 (2002) 277-291. | Numdam | MR 1958244 | Zbl 1013.68088
and ,[32] Tight bounds on the simulation of unary probabilistic automata by deterministic automata, J. Automata, Languages and Combinatorics 6 (2001) 481-492. | MR 1897056 | Zbl 1050.68095
and ,[33] On the complexity of minimizing probabilistic and quantum automata. Inform. Comput. 218 (2012) 36-53. | MR 2967324 | Zbl 1279.68164
, and ,[34] Quantum automata and quantum grammars. Theoret. Comput. Sci. 237 (2000) 275-306. | MR 1756213 | Zbl 0939.68037
and ,[35] Introduction to Probabilistic Automata. Academic Press, New York (1971). | MR 289222 | Zbl 0234.94055
,[36] Some Observations on Two-Way Finite Automata with Quantum and Classical States, ICIC 2008. In vol. 5226 of Lect. Notes Comput. Sci. (2008) 1-8. | Zbl pre06101071
,[37] Finite automata and their decision problems. IBM J. Research Devel. 3 (1959) 115-125. | MR 103795 | Zbl 0158.25404
and ,[38] Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000. | MR 1796805 | Zbl 1288.81001
and ,[39] Quantum finite automata, CRC Handbook of Finite State Based Models and Applications. Edited by J.C. Wang. CRC Press (2012) 113-144. | MR 3014620 | Zbl pre06300099
, , and ,[40] On the reducibility of events represented in automata. In Annales Academiae Scientiarum Fennicae. Volume Series A of I. Math. (1964) 353. | MR 168462 | Zbl 0168.26003
,[41] The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994) 315-328. | MR 1264137 | Zbl 0795.68112
, and .[42] State Complexity: Recent Results and Open Problems. Fundamenta Informaticae 64 (2005) 471-480. | MR 2347575 | Zbl 1102.68076
,[43] Unbounded-error quantum computation with small space bounds, Inform. Comput. 209 (2011) 873-892. | MR 2817180 | Zbl 1221.68092
and ,[44] Succinctness of two-way probabilistic and quantum finite automata. Discrete Math. Theoret. Comput. Sci. 12 (2010) 19-40. | MR 2760333 | Zbl 1286.68297
and ,[45] One-way finite automata with quantum and classical states, vol 7300 of Lect. Notes Comput. Sci. Edited by H. Bordihn, M. Kutrib, and B. Truthe (2012) 273-290. | Zbl pre06101071
, , and ,[46] State succinctness of two-way finite automata with quantum and classical states, Theoret. Comput. Sci. 499 (2013) 98-112. | MR 3084151 | Zbl 1296.68098
, , , and ,[47] Some languages recognized by two-way finite automata with quantum and classical states. Int. J. Foundation Comput. Sci. 23 (2012) 1117-1129. | MR 2983371 | Zbl 1259.68117
, and ,[48] Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata. arXiv:1304.3876 (2013).
, and .