We investigate the Sandpile Model and Chip Firing Game and an extension of these models on cycle graphs. The extended model consists of allowing a negative number of chips at each vertex. We give the characterization of reachable configurations and of fixed points of each model. At the end, we give explicit formula for the number of their fixed points.
@article{ITA_2013__47_2_133_0, author = {Cori, Robert and Duong Phan, Thi Ha and Huong Tran, Thi Thu}, title = {Signed Chip Firing Games and symmetric Sandpile Models on the cycles}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {47}, year = {2013}, pages = {133-146}, doi = {10.1051/ita/2012023}, mrnumber = {3072314}, zbl = {1266.05098}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2013__47_2_133_0} }
Cori, Robert; Duong Phan, Thi Ha; Huong Tran, Thi Thu. Signed Chip Firing Games and symmetric Sandpile Models on the cycles. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) pp. 133-146. doi : 10.1051/ita/2012023. http://gdmltest.u-ga.fr/item/ITA_2013__47_2_133_0/
[1] Self-organized criticality : An explanation of 1/f noise. Phys. Rev. Lett. 59 (1987) 381-284. | MR 949160 | Zbl 1230.37103
, and ,[2] Chip-firing games on graphs. Eur. J. Combin. 12 (1991) 283-291. | MR 1120415 | Zbl 0729.05048
, and ,[3] On the sandpile group of dual graphs. Eur. J. Combin. 21 (2000) 447-459. | MR 1756151 | Zbl 0969.05034
and ,[4] A simplified proof for the self-stabilizing protocol : A game of cards. Inf. Process. Lett. 54 (1995) 327-328. | Zbl 1004.68506
, , and ,[5] Algebraic aspects of abelian sandpile models. J. Phys. A 28 (1995) 805-831. | MR 1326322 | Zbl 0848.68062
, , and ,[6] Advances in symmetric sandpiles. Fundam. Inf. 76 (2007) 91-112. | MR 2293052 | Zbl 1112.37010
, and ,[7] Games on line graphes and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | MR 1224440 | Zbl 0785.90120
and ,[8] Lattice structure and convergence of a game of cards. Ann. Combin. 6 (2002) 327-335. | MR 1980343 | Zbl 1093.06001
, and ,[9] Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51-64. | MR 1881267 | Zbl 0998.05005
, and .[10] The structure of linear chip firing game and related models. Theoret. Comput. Sci. 270 (2002) 827-841. | MR 1871097 | Zbl 0992.68226
, and ,[11] Clémence Magnien, Michel Morvan and Ha Duong Phan. Sandpile models and lattices : a comprehensive survey. Theoret. Comput. Sci. 322 (2004) 383-407. | MR 2080235 | Zbl 1054.05007
and ,[12] Leader election in uniform rings. ACM Trans. Program. Lang. Syst. 15 (1993) 563-573.
.[13] Particle hole symmetry in a sandpile model, J. Stat. Mech. 2005 (2005) L01002.
and ,[14] The lattice structure of chip firing games. Physica D 115 (2001) 69-82. | MR 1837204 | Zbl 0978.68109
and ,[15] Two sided sand piles model and unimodal sequences. RAIRO - Theor. Inf. Appl. 42 (2008) 631-646. | Numdam | MR 2434039 | Zbl 1149.68408
,