On biautomata
Klíma, Ondřej ; Polák, Libor
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012), p. 573-592 / Harvested from Numdam

We initiate the theory and applications of biautomata. A biautomaton can read a word alternately from the left and from the right. We assign to each regular language L its canonical biautomaton. This structure plays, among all biautomata recognizing the language L, the same role as the minimal deterministic automaton has among all deterministic automata recognizing the language L. We expect that from the graph structure of this automaton one could decide the membership of a given language for certain significant classes of languages. We present the first two results of this kind: namely, a language L is piecewise testable if and only if the canonical biautomaton of L is acyclic. From this result Simon's famous characterization of piecewise testable languages easily follows. The second class of languages characterizable by the graph structure of their biautomata are prefix-suffix testable languages.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/ita/2012014
Classification:  68Q70
@article{ITA_2012__46_4_573_0,
     author = {Kl\'\i ma, Ond\v rej and Pol\'ak, Libor},
     title = {On biautomata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {46},
     year = {2012},
     pages = {573-592},
     doi = {10.1051/ita/2012014},
     mrnumber = {3107864},
     zbl = {1279.68238},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2012__46_4_573_0}
}
Klíma, Ondřej; Polák, Libor. On biautomata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 573-592. doi : 10.1051/ita/2012014. http://gdmltest.u-ga.fr/item/ITA_2012__46_4_573_0/

[1] J. Brzozowski, Derivatives of regular expressions. J. ACM 11 (1964) 481-494. | MR 174434 | Zbl 0225.94044

[2] O. Klíma, Piecewise testable languages via combinatorics on words. Disc. Math. 311 (2011) 2124-2127. | MR 2825655 | Zbl 1227.68086

[3] O. Klíma and L. Polák, On varieties of meet automata. Theoret. Comput. Sci. 407 (2008) 278-289. | MR 2463014 | Zbl 1154.68070

[4] O. Klíma and L. Polák, Hierarchies of piecewise testable languages. Int. J. Found. Comput. Sci. 21 (2010) 517-533. | MR 2678186 | Zbl 1205.68206

[5] S. Lombardy and J. Sakarovich, The universal automaton, in Logic and Automata : History and Perspectives, edited by J. Flum, E. Grödel and T. Wilke. Amsterdam University Press (2007) 457-504. | MR 2508751 | Zbl 1217.68133

[6] J.-E. Pin, Varieties of Formal Languages. North Oxford, London and Plenum, New York (1986). | MR 912694 | Zbl 0632.68069

[7] J.-E. Pin, Syntactic semigroups, in Handbook of Formal Languages, Chap. 10, edited by G. Rozenberg and A. Salomaa. Springer (1997). | MR 1470002 | Zbl 0866.68057

[8] L. Polák, Syntactic semiring and universal automata, in Proc. of DLT 2003. Lect. Notes Comput. Sci. 2710 (2003) 411-422. | MR 2054382 | Zbl 1037.68099

[9] I. Simon, Hierarchies of events of dot-depth one. Ph.D. thesis. University of Waterloo (1972). | MR 2623305

[10] I. Simon, Piecewise testable events, in Proc. of ICALP 1975. Lect. Notes Comput. Sci. 33 (1975) 214-222. | MR 427498 | Zbl 0316.68034