The Parikh finite word automaton (PA) was introduced and studied in 2003 by Klaedtke and Rueß. Natural variants of the PA arise from viewing a PA equivalently as an automaton that keeps a count of its transitions and semilinearly constrains their numbers. Here we adopt this view and define the affine PA, that extends the PA by having each transition induce an affine transformation on the PA registers, and the PA on letters, that restricts the PA by forcing any two transitions on the same letter to affect the registers equally. Then we report on the expressiveness, closure, and decidability properties of such PA variants. We note that deterministic PA are strictly weaker than deterministic reversal-bounded counter machines.
@article{ITA_2012__46_4_511_0, author = {Cadilhac, Micha\"el and Finkel, Alain and McKenzie, Pierre}, title = {Affine Parikh automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {46}, year = {2012}, pages = {511-545}, doi = {10.1051/ita/2012013}, mrnumber = {3107862}, zbl = {1279.68136}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2012__46_4_511_0} }
Cadilhac, Michaël; Finkel, Alain; McKenzie, Pierre. Affine Parikh automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 511-545. doi : 10.1051/ita/2012013. http://gdmltest.u-ga.fr/item/ITA_2012__46_4_511_0/
[1] Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8 (1974) 315-332. | MR 375844 | Zbl 0309.68043
and ,[2] Parikh-bounded languages, in ICALP. Lect. Notes Comput. Sci. 115 (1981) 316-323. | MR 635146 | Zbl 0462.68057
and ,[3] Reversal-bounded acceptors and intersections of linear languages. SIAM J. Comput. 3 (1974) 283. | MR 433992 | Zbl 0292.68023
, and ,[4] Analogies of PAL and COPY, in Fundamentals of Computation Theory. Lect. Notes in Comput. Sci. 117 (1981) 61-70. | MR 652970 | Zbl 0462.68058
,[5] One-reversal counter machines and multihead automata : revisited, in Proc. of SOFSEM. ACM (2011) 166-177. | MR 2804119 | Zbl 1298.68127
, , , and ,[6] A Mathematical Introduction to Logic. Academic Press (1972). | MR 337470 | Zbl 0992.03001
,[7] A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4 (1975) 69-76. | MR 389572 | Zbl 0294.02022
and ,[8] Bounded underapproximations. Form. Methods Syst. Des. 40 (2012) 206-231. | Zbl 1247.68140
, and ,[9] Semigroups, Presburger formulas and languages. Pacific J. Math. 16 (1966) 285-296. | MR 191770 | Zbl 0143.01602
and ,[10] Finite-turn pushdown automata. SIAM J. Control Optim. 4 (1966) 429. | MR 204294 | Zbl 0147.25302
and ,[11] A note on undecidable properties of formal languages. Math. Syst. Theor. 2 (1968) 1-6. | MR 455542 | Zbl 0157.01902
,[12] Reversal-bounded multicounter machines and their decision problems. J. ACM 25 (1978) 116-133. | MR 461988 | Zbl 0365.68059
,[13] A technique for proving decidability of containment and equivalence of linear constraint queries. J. Comput. Syst. Sci. 59 (1999) 1-28. | MR 1702938 | Zbl 0939.68028
and ,[14] Counter machines and verification problems. Theor. Comput. Sci. 289 (2002) 165-189. | MR 1932894 | Zbl 1061.68095
, , , and ,[15] Parikh automata with pushdown stack. Diploma thesis, RWTH Aachen (2004).
,[16] Parikh automata and monadic second-order logics with linear cardinality constraints. Universität Freiburg, Tech. Rep. 177 (2002).
and ,[17] Monadic second-order logics with cardinalities, in Proc. of ICALP. Lect. Notes Comput. Sci. 2719 (2003) 681-696. | MR 2080737 | Zbl 1039.03004
and ,[18] Classes of languages and linear bounded automata. Inform. Control 7 (1964) 207-223. | MR 169724 | Zbl 0199.04002
,[19] Mots infinis et langages commutatifs. RAIRO Inform. Théor. Appl. 12 (1978) 185-192. | Numdam | MR 510635 | Zbl 0387.68051
,[20] Combinatorics : A Guided Tour. Mathematical Association of Mathematics (2010). | MR 2572113 | Zbl 1187.05001
,[21] Extensional uniformity for boolean circuits. SIAM J. Comput. 39 (2010) 3186-3206. | MR 2678071 | Zbl 1209.68254
, and ,[22] Numerical document queries, in Principles of Database Systems. ACM, San Diego, CA, USA (2003) 155-166.
, and ,[23] Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994). | MR 1269544 | Zbl 0816.68086
,[24] Logic meets algebra : the case of regular languages. Log. Meth. Comput. Sci. 3 (2007) 1-37. | MR 2295792 | Zbl 1128.03029
and ,[25] Tame Topology and O-minimal Structures. Cambridge Univ. Press (1998). | MR 1633348 | Zbl 0953.03045
,[26] An automata-theoretic approach to Presburger arithmetic constraints, in Static Analysis (SAS'95). Lect. Notes Comput. Sci. 983 (1995) 21-32.
and ,[27] Xml schema, tree logic and sheaves automata, in Rewriting Techniques and Applications (2003) 246-263. | MR 2071589 | Zbl 1038.68039
and ,