Normal forms for unary probabilistic automata
Bianchi, Maria Paola ; Pighizzini, Giovanni
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012), p. 495-510 / Harvested from Numdam

We investigate the possibility of extending Chrobak normal form to the probabilistic case. While in the nondeterministic case a unary automaton can be simulated by an automaton in Chrobak normal form without increasing the number of the states in the cycles, we show that in the probabilistic case the simulation is not possible by keeping the same number of ergodic states. This negative result is proved by considering the natural extension to the probabilistic case of Chrobak normal form, obtained by replacing nondeterministic choices with probabilistic choices. We then propose a different kind of normal form, namely, cyclic normal form, which does not suffer from the same problem: we prove that each unary probabilistic automaton can be simulated by a probabilistic automaton in cyclic normal form, with at most the same number of ergodic states. In the nondeterministic case there are trivial simulations between Chrobak normal form and cyclic normal form, preserving the total number of states in the automata and in their cycles.

Publié le : 2012-01-01
DOI : https://doi.org/10.1051/ita/2012017
Classification:  68Q45,  68Q10
@article{ITA_2012__46_4_495_0,
     author = {Bianchi, Maria Paola and Pighizzini, Giovanni},
     title = {Normal forms for unary probabilistic automata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {46},
     year = {2012},
     pages = {495-510},
     doi = {10.1051/ita/2012017},
     mrnumber = {3107861},
     zbl = {1279.68132},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2012__46_4_495_0}
}
Bianchi, Maria Paola; Pighizzini, Giovanni. Normal forms for unary probabilistic automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 495-510. doi : 10.1051/ita/2012017. http://gdmltest.u-ga.fr/item/ITA_2012__46_4_495_0/

[1] M.P. Bianchi, C. Mereghetti, B. Palano and G. Pighizzini, On the size of unary probabilistic and nondeterministic automata. Fundamenta Informaticae 112 (2011) 119-135. | MR 2918602 | Zbl 1251.68125

[2] M. Chrobak, Finite automata and unary languages, Theoret. Comput. Sci. 47 (1986) 149-158; Erratum, Theoret. Comput. 302 (2003) 497-498. | MR 881208 | Zbl 0638.68096

[3] V. Geffert, Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205 (2001) 1652-1670. | MR 2368645 | Zbl 1130.68069

[4] G. Gramlich, Probabilistic and Nondeterministic Unary Automata, in Proc. of MFCS. Lect. Notes Comput. Sci. 2757 (2003) 460-469. | MR 2081596 | Zbl 1124.68381

[5] D.L. Isaacson and R.W. Madsen, Markov Chains Theory and Applications, edited by J. Wiley & Sons, Inc. (1976). | MR 407991 | Zbl 0647.60078

[6] T. Jiang, E. Mcdowell and B. Ravikumar, The structure and complexity of minimal nfa's over a unary alphabet. Int. J. Found. Comput. Sci. 2 (1991) 163-182. | MR 1143922 | Zbl 0746.68040

[7] J. Kaneps, Regularity of One-Letter Languages Acceptable by 2-Way Finite Probabilistic Automata, in Proc of FCT. Lect. Notes Comput. Sci. 529 (1991) 287-296. | MR 1136091 | Zbl 0925.03181

[8] C. Mereghetti and G. Pighizzini, Optimal simulations between unary automata. SIAM J. Comput. 30 (2001) 1976-1992. | MR 1856565 | Zbl 0980.68048

[9] C. Mereghetti, B. Palano and G. Pighizzini, Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. RAIRO-Theor. Inf. Appl. 5 (2001) 477-490. | Numdam | MR 1908867 | Zbl 1010.68068

[10] M. Milani and G. Pighizzini, Tight bounds on the simulation of unary probabilistic automata by deterministic automata. J. Automata, Languages and Combinatorics 6 (2001) 481-492. | MR 1897056 | Zbl 1050.68095

[11] A. Paz, Introduction to Probabilistic Automata. Academic Press, New York (1971). | MR 289222 | Zbl 0234.94055

[12] M. Rabin, Probabilistic automata. Inf. Control 6 (1963) 230-245. | Zbl 0182.33602

[13] E. Seneta, Non-negative Matrices and Markov Chains, 2nd edition. Springer-Verlag (1981). | MR 2209438 | Zbl 1099.60004

[14] A.W. To, Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109 (2009) 1010-1014. | MR 2547574 | Zbl 1202.68241