Let Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ} be the language recognized by a formal series ϕ:Σ∗ → ℝ with isolated cut point λ. We provide new conditions that guarantee the regularity of the language Lϕ,λ in the case that ϕ is rational or ϕ is a Hadamard quotient of rational series. Moreover the decidability property of such conditions is investigated.
@article{ITA_2012__46_4_479_0, author = {Bertoni, Alberto and Bianchi, Maria Paola and D'Alessandro, Flavi}, title = {Regularity of languages defined by formal series with isolated cut point}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {46}, year = {2012}, pages = {479-493}, doi = {10.1051/ita/2012019}, mrnumber = {3107860}, zbl = {1279.68131}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2012__46_4_479_0} }
Bertoni, Alberto; Bianchi, Maria Paola; D’Alessandro, Flavi. Regularity of languages defined by formal series with isolated cut point. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 479-493. doi : 10.1051/ita/2012019. http://gdmltest.u-ga.fr/item/ITA_2012__46_4_479_0/
[1] On 2pfas and the Hadamard quotient of formal power series. Bull. Belg. Math. Soc. 1 (1994) 165-173. | MR 1318966 | Zbl 0803.68073
and ,[2] Rational Series and Their Languages. Springer-Verlag (1988). | MR 971022 | Zbl 0668.68005
and ,[3] The solution of problems relative to probabilistic automata in the frame of the formal languages theory, in Vierte Jahrestagung der Gesellschaft for Informatik. Lect. Notes Comput. Sci. 26 (1975) 107-112. | MR 386897 | Zbl 0327.94069
,[4] Some recursively unsolvable problems relating to isolated cutpoints in probabilistic automata, in Proc. of 4th International Colloquium on Automata, Languages and Programming. Lect. Notes Comput. Sci. 52 (1977) 87-94. | MR 460000 | Zbl 0366.94064
, and ,[5] Quantum Computing : 1-Way Quantum Automata, in Proc. of Developments in Language Theory. Lect. Notes Comput. Sci. (2003) 1-20. | MR 2053870 | Zbl 1037.68058
, and ,[6] Undecidable problems for probabilistic automata of fixed dimension. Theor. Comput. Syst. 36 (2003) 231-245. | MR 1962327 | Zbl 1039.68061
and ,[7] Decidable and undecidable problems about quantum automata. SIAM J. Comput. 34 (2005) 1464-1473 | MR 2165750 | Zbl 1078.81012
, , and ,[8] Characterization of 1-way quantum finite automata. Available on http://xxx.lanl.gov/abs/quant-ph/9903014. | Zbl 1051.68062
and ,[9] Private communication to the authors, July 2011.
,[10] The Algebraic Theory of Context-Free Languages, in Computer Programming and Formal Systems. North-Holland, Amsterdam (1963). | MR 152391 | Zbl 0148.00804
and ,[11] Handbook of weighted automata. EATCS Series Springer (2009). | MR 2777706 | Zbl 1200.68001
, and ,[12] A time complexity gap for two-way probabilistic finite-state automata. SIAM J. Comput. 19 (1990) 1011-1023. | MR 1069095 | Zbl 0711.68075
and ,[13] Probabilistic Two-way Machines, in Proc. of Int. Symp. Math. Found. Comput. Sci. Lect. Notes Comput. Sci. 118 (1981) 33-45. | MR 652738 | Zbl 0486.68045
,[14] La finitude des représentations linéaires des semigoupes est décidable. J. Algebra 52 (1978) 437-459. | MR 473071 | Zbl 0374.20074
,[15] Running time to recognize nonregular languages by two-way probabilistic automata, in Proc. of ICALP 91. Lect. Notes Comput. Sci. 510 (1991) 174-185. | MR 1129905 | Zbl 0766.68098
and ,[16] On the undecidability of probabilistic planning and infinite-horizon partially observable markov decision problems, in Proc. of the 6th National Conference on Artificial Intelligence (1999).
, and ,[17] Introduction to Probabilistic Automata. Academic Press (1971). | MR 289222 | Zbl 0234.94055
,[18] Probabilistic automata. Inf. Control 6 (1963) 230-245. | Zbl 0182.33602
,[19] Automata-theoretic aspects of formal power series. Springer (1978). | MR 483721 | Zbl 0377.68039
and ,[20] On the definition of a family of automata. Inf. Control 4 (1961) 245-270. | MR 135680 | Zbl 0104.00702
,[21] Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris, Sér. I 306 (1988) 97-102. | MR 929097 | Zbl 0635.10007
,