This paper deals with rational base number systems for p-adic numbers. We mainly focus on the system proposed by Akiyama et al. in 2008, but we also show that this system is in some sense isomorphic to some other rational base number systems by means of finite transducers. We identify the numbers with finite and eventually periodic representations and we also determine the number of representations of a given p-adic number.
@article{ITA_2012__46_1_87_0, author = {Frougny, Christiane and Klouda, Karel}, title = {Rational base number systems for $p$-adic numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {46}, year = {2012}, pages = {87-106}, doi = {10.1051/ita/2011114}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2012__46_1_87_0} }
Frougny, Christiane; Klouda, Karel. Rational base number systems for $p$-adic numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 87-106. doi : 10.1051/ita/2011114. http://gdmltest.u-ga.fr/item/ITA_2012__46_1_87_0/
[1] Powers of rationals modulo 1 and rational base number systems. Isr. J. Math. 168 (2008) 53-91. | MR 2448050 | Zbl 1214.11089
, and ,[2] Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975) 255-260. | MR 389759 | Zbl 0309.12001
and ,[3] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 95. Cambridge University Press (2002). | MR 1905123 | Zbl 1221.68183
,[4] An unsolved problem on the powers of 3/2. J. Austral. Math. Soc. 8 (1968) 313-321. | MR 227109 | Zbl 0155.09501
,[5] Introduction to p-adic analytic number theory. American Mathematical Society (2002). | MR 1913413 | Zbl 1031.11067
,[6] Functional iteration and the Josephus problem. Glasg. Math. J. 33 (1991) 235-240. | MR 1108748 | Zbl 0751.05007
and ,[7] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR 97374 | Zbl 0079.08901
,[8] The Josephus problem. Math. Gaz. 44 (1960) 47-52. | MR 117163
,[9] Elements of Automata Theory. Cambridge University Press, New York (2009). | MR 2567276 | Zbl 1188.68177
,