The (-β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (-β)-integers by a fixed point of an anti-morphism.
@article{ITA_2012__46_1_181_0,
author = {Steiner, Wolfgang},
title = {On the structure of $(-\varepsilon )$-integers},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {46},
year = {2012},
pages = {181-200},
doi = {10.1051/ita/2011115},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2012__46_1_181_0}
}
Steiner, Wolfgang. On the structure of $(-\varepsilon )$-integers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 181-200. doi : 10.1051/ita/2011115. http://gdmltest.u-ga.fr/item/ITA_2012__46_1_181_0/
[1] , , and , Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT]. | MR 3051451 | Zbl 1271.11009
[2] , and , Asymptotic behavior of beta-integers. Lett. Math. Phys. 84 (2008) 179-198. | MR 2415548 | Zbl 1185.11063
[3] , and , Sequences with constant number of return words. Monatsh. Math. 155 (2008) 251-263. | MR 2461579 | Zbl 1185.68503
[4] , and , On a class of infinite words with affine factor complexity. Theoret. Comput. Sci. 389 (2007) 12-25. | MR 2363357 | Zbl 1143.68062
[5] and , Tilings associated with beta-numeration and substitutions. Integers 5 (2005) 46 (electronic only). | MR 2191748 | Zbl 1139.37008
[6] , , and , Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | MR 1644115 | Zbl 0941.52019
[7] , A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89-101. | MR 1489074 | Zbl 0895.68087
[8] , AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math. 31 (2008) 375-398. | MR 2477879 | Zbl 1177.37012
[9] , Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR 1311222 | Zbl 0872.11017
[10] and , On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci. 5583 (2009) 252-263. | MR 2544706 | Zbl 1247.68139
[11] , and , Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004) 163-185; Corrigendum: RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | Numdam | MR 2076404 | Zbl 1104.11013
[12] and , Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Numdam | MR 2145576 | Zbl 1075.11007
[13] , Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst. 27 (2007) 1583-1598. | Zbl 1123.37015
[14] and , Beta-expansions with negative bases. Integers 9 (2009) 239-259. | MR 2534912 | Zbl 1191.11005
[15] and , Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear. | MR 2888207 | Zbl 1295.11010
[16] and , Factor complexity of infinite words associated with non-simple Parry numbers. Integers 9 (2009) 281-310. | MR 2534914 | Zbl 1193.68201
[17] and , Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2. | MR 2974214 | Zbl 1266.37017
[18] and , Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech. 51 (2011) 59-64.
[19] , On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960) 401-416. | MR 142719 | Zbl 0099.28103
[20] , Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957) 477-493. | MR 97374 | Zbl 0079.08901
[21] , Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).