Any amicable pair ϕ, ψ of Sturmian morphisms enables a construction of a ternary morphism η which preserves the set of infinite words coding 3-interval exchange. We determine the number of amicable pairs with the same incidence matrix in SL±(2,ℕ) and we study incidence matrices associated with the corresponding ternary morphisms η.
@article{ITA_2012__46_1_107_0, author = {Hejda, Tom\'a\v s}, title = {Morphisms preserving the set of words coding three interval exchange}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {46}, year = {2012}, pages = {107-122}, doi = {10.1051/ita/2012009}, mrnumber = {2904964}, zbl = {1247.68207}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2012__46_1_107_0} }
Hejda, Tomáš. Morphisms preserving the set of words coding three interval exchange. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) pp. 107-122. doi : 10.1051/ita/2012009. http://gdmltest.u-ga.fr/item/ITA_2012__46_1_107_0/
[1] Matrices of 3-iet preserving morphisms. Theoret. Comput. Sci. 400 (2008) 113-136. | Zbl 1161.68042
, and ,[2] Morphisms fixing words associated with exchange of three intervals. RAIRO - Theor. Inf. Appl. 44 (2010) 3-17. | Numdam | MR 2604932 | Zbl 1186.68342
, and ,[3] On the number of factors in codings of three interval exchange. Discrete Math. Theoret. Comput. Sci. 13 (2011) 51-66. | MR 2854338 | Zbl 1283.68274
, , and ,[4] Sturm numbers and substitution invariance of 3iet words. Integers 8 (2008) A14, 17. | MR 2393372 | Zbl 1202.11021
, , and ,[5] Recent results in Sturmian words, in Developments in language theory II. Magdeburg (1995). World Sci. Publ., River Edge, NJ (1996) 13-24. | MR 1466181 | Zbl 1096.68689
,[6] Morphismes de sturm. Bull. Belg. Math. Soc. 1 (1994) 175-189. | MR 1318967 | Zbl 0803.68095
and ,[7] Sequences with grouped factors, in Developments in language theory III. Aristotle University of Thessaloniki, Greece (1998) 211-222.
,[8] Sequences with minimal block growth. Math. Syst. Theor. 7 (1973) 138-153. | MR 322838 | Zbl 0256.54028
and ,[9] Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89 (2003) 239-276. | MR 1981920 | Zbl 1130.37324
, and ,[10] Morphisms on generalized sturmian words. Master's thesis, Czech Technical University in Prague (2008).
,[11] Approximations in ergodic theory. Uspehi Mat. Nauk 22 (1967) 81-106. | MR 219697 | Zbl 0172.07202
and ,[12] Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 90 (2002). | MR 1905123 | Zbl 1001.68093
,[13] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03 | MR 745
and ,[14] On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. | MR 1603835 | Zbl 0981.68104
,