We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.
@article{ITA_2011__45_4_375_0, author = {Honkala, Juha}, title = {The cyclicity problem for the images of Q-rational series}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {45}, year = {2011}, pages = {375-381}, doi = {10.1051/ita/2011111}, mrnumber = {2876112}, zbl = {1261.11027}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2011__45_4_375_0} }
Honkala, Juha. The cyclicity problem for the images of Q-rational series. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) pp. 375-381. doi : 10.1051/ita/2011111. http://gdmltest.u-ga.fr/item/ITA_2011__45_4_375_0/
[1] Rational Series and Their Languages. Springer, Berlin (1988). | MR 971022 | Zbl 0668.68005
and ,[2] Noncommutative Rational Series with Applications. Cambridge University Press, Cambridge (2011). | MR 2760561 | Zbl 1250.68007
and ,[3] La finitude des représentations linéaires des semi-groupes est décidable. J. Algebra 52 (1978) 437-459. | MR 473071 | Zbl 0374.20074
,[4] Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math. 151 (1921) 1-31. | JFM 47.0276.02
,[5] Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978). | MR 483721 | Zbl 0377.68039
and ,[6] On the definition of a family of automata, Inf. Control 4 (1961) 245-270. | MR 135680 | Zbl 0104.00702
,