We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model (n), a generalization of the sand pile model (n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().
@article{ITA_2010__44_4_525_0, author = {Massazza, Paolo and Radicioni, Roberto}, title = {A CAT algorithm for the exhaustive generation of ice piles}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {525-543}, doi = {10.1051/ita/2011004}, mrnumber = {2775410}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_4_525_0} }
Massazza, Paolo; Radicioni, Roberto. A CAT algorithm for the exhaustive generation of ice piles. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 525-543. doi : 10.1051/ita/2011004. http://gdmltest.u-ga.fr/item/ITA_2010__44_4_525_0/
[1] Self-organized criticality. Phys. Rev. A 38 (1988) 364-374.
, and ,[2] The lattice of integer partitions. Discrete Math. 6 (1973) 201-219. | Zbl 0283.06003
,[3] Enumeration of sand piles. Discrete Math. 256 (2002) 625-643. | Zbl 1013.05010
and ,[4] Bidimensional sand pile and ice pile models. PU.M.A. 17 (2007) 71-96.
, , and ,[5] Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | Zbl 0785.90120
and ,[6] Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51-64. | Zbl 0998.05005
, and ,[7] Structure of same sand piles model. Theoret. Comput. Sci. 262 (2001) 525-556. | Zbl 0983.68085
, , and ,[8] A CAT algorithm for sand piles. PU.M.A. 19 (2008) 147-158. | Zbl pre05855081
,