The paper deals with some classes of two-dimensional recognizable languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. For such classes we can solve some open questions related to unambiguity, finite ambiguity and complementation. Then we reformulate a necessary condition for recognizability stated by Matz, introducing a new complexity function. We solve an open question proposed by Matz, showing that all the known necessary conditions for recognizability of a language and its complement are not sufficient. The proof relies on a family of languages defined by functions.
@article{ITA_2010__44_4_471_0, author = {Anselmo, Marcella and Madonia, Maria}, title = {Classes of two-dimensional languages and recognizability conditions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {471-488}, doi = {10.1051/ita/2011003}, mrnumber = {2775407}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_4_471_0} }
Anselmo, Marcella; Madonia, Maria. Classes of two-dimensional languages and recognizability conditions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 471-488. doi : 10.1051/ita/2011003. http://gdmltest.u-ga.fr/item/ITA_2010__44_4_471_0/
[1] Deterministic and unambiguous two-dimensional languages over one-letter alphabet. Theoret. Comput. Sci. 410 (2009) 1477-1485. | Zbl 1162.68020
and ,[2] A note on unambiguity, finite ambiguity and complementation in recognizable two-dimensional languages, in Proc. CAI 09. Lect. Notes Comput. Sci. 5725 (2009) 147-159. | Zbl pre05625944
and ,[3] Unambiguous recognizable two-dimensional languages. RAIRO-Theor. Inf. Appl. 40 (2006) 227-294. | Numdam | Zbl 1112.68085
, , and .[4] From determinism to non-determinism in recognizable two-dimensional languages, in Proc. DLT 07. Lect. Notes Comput. Sci. 4588 (2007) 36-47. | Zbl 1202.68218
, and ,[5] Framed versus unframed two-dimensional languages, in Proc. SOFSEM 09. Lecture Notes in Comput. Sci. 5404 (2009) 79-92. | Zbl 1206.68166
, and ,[6] Deterministic and unambiguous families within recognizable two-dimensional languages. Fund. Inform. 98 (2010) 143-166. | Zbl 1196.68117
, and ,[7] The complexity of unary tiling-recognizable picture languages. Fund. Inform. 90 (2009) 231-249. | Zbl 1179.68067
, and ,[8] Intersection and union of regular languages and state complexity. Inform. Proces. Lett. 43 (1992) 185-190. | Zbl 0763.68048
,[9] Bidimensional pictures: reconstruction, expression and encoding, Ph.D. thesis. http://www.dsi.unifi.it/DRIIA/RaccoltaTesi/Brocchi.pdf
,[10] Langages de figures, Rapport de stage, ENS Lyon (1997).
,[11] Automata, Languages and Machines, Vol. A. Academic Press (1974). | Zbl 0359.94067
,[12] Two-dimensional languages and recognizable functions, in Proc. DLT 93, edited by G. Rozenberg and A. Salomaa. World Scientific Publishing Co., Singapore (1994), 290-301.
,[13] Recognizable picture languages. Int. J. Pattern Recogn. Artif. Intell. 6 (1992) 241-256.
and ,[14] Two-dimensional languages, Handbook of Formal Languages, Vol. III. G. Rozenberg et al., Eds. Springer Verlag (1997), 215-268.
and ,[15] Matrix based complexity functions and recognizable picture languages, in Logic and Automata: History and Perspectives, E. Grader, J. Flum and T. Wilke, Eds. Texts in Logic and Games 2. Amsterdam University Press (2007), 315-337. | Zbl pre05872391
and ,[16] Ambiguity and complementation in recognizable two-dimensional languages, in Proc. Int. Conf. Theoret. Comput. Sci., IFIP, Vol. 273, edited by G. Ausiello, J. Karhumäki, G. Mauri and L. Ong. Springer, Boston (2008), 5-20.
and ,[17] A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59 (1996) 75-77. | Zbl 0900.68313
, ,[18] Communication Complexity and Parallel Computing. Springer (1997). | Zbl 0873.68098
,[19] Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput. 172 (2002) 202-217. | Zbl 1009.68067
, , , and ,[20] Snake-deterministic tiling systems, in Proc. MFCS 2009, 34th International Symposium on Mathematical Foundations of Computer Science. Lect. Notes Comput. Sci. 5734 (2009) 549-560. | Zbl pre05617296
and ,[21] On piecewise testable, starfree, and recognizable picture languages, in Foundations of Software Science and Computation Structures, Vol. 1378, M. Nivat, Ed. Springer-Verlag, Berlin (1998). | Zbl 1147.68045
,[22] Dot-depth and monadic quantifier alternation over pictures, Ph.D. thesis Technical Report 99-08, RWTH Aachen (1999). | Zbl 0938.68501
,[23] Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures, Theoret. Comput. Sci. 270 (2002) 1-70. | Zbl 0992.68128
,[24] Characterizations of Recognizable Picture Series, Ph.D. thesis, Universität Leipzig, Institut für Informatik, Abteilung Automaten und Sprachen (2007). | Zbl 1164.68016
,[25] Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bull. Belgian Math. Soc. 1 (1994) 285-298. | Zbl 0803.68032
, and ,[26] The #a = #b Pictures are recognizable, in Proc. 18th STACS 2001. Lect. Notes Comput. Sci. 2010 (2001) 527-538. | Zbl 0976.03044
,