A word u defined over an alphabet is c-balanced (c ∈ ) if for all pairs of factors v, w of u of the same length and for all letters a ∈ , the difference between the number of letters a in v and w is less or equal to c. In this paper we consider a ternary alphabet = {L, S, M} and a class of substitutions defined by (L) = LpS, (S) = M, (M) = Lp-1S where p > 1. We prove that the fixed point of , formally written as (L), is 3-balanced and that its abelian complexity is bounded above by the value 7, regardless of the value of p. We also show that both these bounds are optimal, i.e. they cannot be improved.
@article{ITA_2010__44_3_313_0, author = {Turek, Ond\v rej}, title = {Balances and abelian complexity of a certain class of infinite ternary words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {313-337}, doi = {10.1051/ita/2010017}, mrnumber = {2761522}, zbl = {pre05822255}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_3_313_0} }
Turek, Ondřej. Balances and abelian complexity of a certain class of infinite ternary words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 313-337. doi : 10.1051/ita/2010017. http://gdmltest.u-ga.fr/item/ITA_2010__44_3_313_0/
[1] Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux 14 (2002) 351-386. | Zbl 1113.37003
,[2] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | Zbl 1059.68083
,[3] Sturmian Jungle (or Garden?) on Multiliteral Alphabets. RAIRO: Theoret. Informatics Appl (to appear).
, and ,[4] Combinatorial and Arithmetical Properties of Infinite Words Associated with Quadratic Non-simple Parry Numbers. RAIRO: Theoret. Informatics Appl. 41 3 (2007) 307-328. | Zbl 1144.11009
, and ,[5] Balance properties of multi-dimensional words. Theoret. Comput. Sci. 273 (2002) 197-224. | Zbl 0997.68091
and ,[6] Recurrence in infinite words, in Proc. STACS, LNCS Dresden (Allemagne) 2010, Springer (2001) 1-11. | Zbl 0976.68524
,[7] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | Zbl 1004.37008
, and ,[8] Sequences with minimal block growth. Math. Syst. Th. 7 (1973) 138-153. | Zbl 0256.54028
and ,[9] Recurrent words with constant Abelian complexity. Adv. Appl. Math. doi:10.1016/j.aam.2010.05.001 (2010).
and ,[10] Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | Zbl 0872.11017
,[11] Additive and multiplicative properties of point-sets based on beta-integers. Theor. Comp. Sci. 303 (2003) 491-516. | Zbl 1036.11034
, and ,[12] Factor complexity of infinite words associated with non-simple Parry numbers. Integers - Electronic Journal of Combinatorial Number Theory (2009) 281-310. | Zbl 1193.68201
and ,[13] Algebraic combinatorics on words. Cambridge University Press (2002). | Zbl pre05869531
,[14] Symbolic dynamics. Am. J. Math. 60 (1938) 815-866. | JFM 64.0798.04
and ,[15] Symbolic dynamics II. Sturmian Trajectories. Am. J. Math. 62 (1940) 1-42. | JFM 66.0188.03
and ,[16] Balance and Abelian Complexity of the Tribonacci word. Adv. Appl. Math. 45 (2010) 212-231. | Zbl 1203.68131
, , ,[17] Abelian Complexity in Minimal Subshifts. J. London Math. Soc. (to appear). | Zbl pre05848935
, , ,[18] Groups, tilings and finite state automata. AMS Colloquium Lecture Notes (1989).
,[19] Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: Theoret. Informatics Appl. 41 2 (2007) 123-135. | Zbl 1146.68410
,[20] Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 787-805. | Zbl 1070.68129
,