We consider words coding exchange of three intervals with permutation (3,2,1), here called 3iet words. Recently, a characterization of substitution invariant 3iet words was provided. We study the opposite question: what are the morphisms fixing a 3iet word? We reveal a narrow connection of such morphisms and morphisms fixing sturmian words using the new notion of amicability.
@article{ITA_2010__44_1_3_0, author = {Ambro\v z, Petr and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita}, title = {Morphisms fixing words associated with exchange of three intervals}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {3-17}, doi = {10.1051/ita/2010002}, mrnumber = {2604932}, zbl = {1186.68342}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_1_3_0} }
Ambrož, Petr; Masáková, Zuzana; Pelantová, Edita. Morphisms fixing words associated with exchange of three intervals. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 3-17. doi : 10.1051/ita/2010002. http://gdmltest.u-ga.fr/item/ITA_2010__44_1_3_0/
[1] Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux 14 (2002) 351-386. | Zbl 1113.37003
,[2] Une caractérisation simple des nombres de Sturm. J. Théor. Nombres Bordeaux 10 (1998) 237-241. | Numdam | Zbl 0930.11051
,[3] Sturm numbers and substitution invariance of 3iet words. Integers 8 (2008) 17 (electronic). | Zbl 1202.11021
, , and ,[4] Complete characterization of substitution invariant Sturmian sequences. Integers 5 (2005) 23 (electronic). | Zbl 1121.11020
, and ,[5] Characterization of substitution invariant 3iet words. Integers 8 (2008) 21 (electronic). | Zbl pre05557876
, and ,[6] Morphismes de Sturm. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 175-189. Journées Montoises (Mons, 1992). | Zbl 0803.68095
and ,[7] On substitution invariant Sturmian words: an application of Rauzy fractals. RAIRO-Theor. Inf. Appl. 41 (2007) 329-349. | Numdam | Zbl 1140.11014
, , and ,[8] An extension of Lagrange's theorem to interval exchange transformations over quadratic fields. J. Anal. Math. 72 (1997) 21-44. | Zbl 0931.28013
and ,[9] Substitution invariant cutting sequences. J. Théor. Nombres Bordeaux 5 (1993) 123-137. | Numdam | Zbl 0786.11041
, , and ,[10] Structure of three interval exchange transformations. I. An arithmetic study. Ann. Inst. Fourier 51 (2001) 861-901. | Numdam | Zbl 1029.11036
, and ,[11] Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89 (2003) 239-276. | Zbl 1130.37324
, and ,[12] Structure of three-interval exchange transformations III: ergodic and spectral properties. J. Anal. Math. 93 (2004) 103-138. | Zbl 1094.37005
, and ,[13] Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers, Dordrecht (1986). Translated from the Czech by Petr Přikryl and Karel Segeth. | Zbl 0677.65019
,[14] Substitution invariant Beatty sequences. Jpn J. Math. (N.S.) 22 (1996) 349-354. | Zbl 0868.11015
and ,[15] Morphismes sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux 5 (1993) 221-233. | Numdam | Zbl 0797.11029
and ,[16] Substitution invariant Sturmian bisequences. J. Théor. Nombres Bordeaux 11 (1999) 201-210. Les XXèmes Journées Arithmétiques (Limoges, 1997). | Numdam | Zbl 0978.11005
,[17] Substitution dynamical systems-spectral analysis. Lect. Notes Math. 1294 (1987). | Zbl 0642.28013
,[18] Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384. | Zbl 0737.68068
,[19] On Sturmian sequences which are invariant under some substitutions. In Number theory and its applications (Kyoto, 1997), Dev. Math. 2, Kluwer Acad. Publ. (1999) 347-373. | Zbl 0971.11007
,