Threshold languages, which are the (k/(k-1))+-free languages over k-letter alphabets with k ≥ 5, are the minimal infinite power-free languages according to Dejean's conjecture, which is now proved for all alphabets. We study the growth properties of these languages. On the base of obtained structural properties and computer-assisted studies we conjecture that the growth rate of complexity of the threshold language over k letters tends to a constant as k tends to infinity.
@article{ITA_2010__44_1_175_0, author = {Shur, Arseny M. and Gorbunova, Irina A.}, title = {On the growth rates of complexity of threshold languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {175-192}, doi = {10.1051/ita/2010012}, mrnumber = {2604942}, zbl = {1184.68341}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_1_175_0} }
Shur, Arseny M.; Gorbunova, Irina A. On the growth rates of complexity of threshold languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 175-192. doi : 10.1051/ita/2010012. http://gdmltest.u-ga.fr/item/ITA_2010__44_1_175_0/
[1] Uniformly growing k-th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | Zbl 0508.68051
,[2] On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | Zbl 1124.68087
,[3] Combinatorics of words, edited by G. Rosenberg and A. Salomaa. Handbook of formal languages, Vol. 1, Chap. 6. Springer, Berlin (1997) 329-438.
, ,[4] Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111-117.
, and ,[5] Dejean's conjecture holds for n ≥ 27. RAIRO-Theor. Inf. Appl. 43 (2009) 775-778. | Zbl 1192.68497
, ,[6] A proof of Dejean's conjecture, http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.1129v3.pdf
, ,[7] Sur un Theoreme de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | Zbl 0245.20052
,[8] On subword complexities of homomorphic images of languages. RAIRO Inform. Theor. 16 (1982) 303-316. | Numdam | Zbl 0495.68069
and ,[9] Combinatorics on words. Addison-Wesley (1983). | Zbl 0514.20045
,[10] Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | Zbl 1111.68096
and ,[11] Proof of Dejean's Conjecture for Alphabets with 5, 6, 7, 8, 9, 10 and 11 Letters. Theoret. Comput. Sci. 95 (1992) 187-205. | Zbl 0745.68085
,[12] À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | Zbl 0536.68072
,[13] Last Cases of Dejean's Conjecture, accepted to WORDS'2009.
,[14] Rational approximations of polynomial factorial languages. Int. J. Found. Comput. Sci. 18 (2007) 655-665. | Zbl 1117.68045
,[15] Combinatorial complexity of regular languages, Proceedings of CSR'2008. Lect. Notes Comput. Sci. 5010 (2008) 289-301. | Zbl 1142.68428
,[16] Growth rates of complexity of power-free languages. Submitted to Theoret. Comput. Sci. (2008). | Zbl 1196.68121
,[17] Comparing complexity functions of a language and its extendable part. RAIRO-Theor. Inf. Appl. 42 (2008) 647-655. | Numdam | Zbl 1149.68055
,[18] Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 7 (1906) 1-22. | JFM 37.0066.17
,