Among the various ways to construct a characteristic sturmian word, one of the most used consists in defining an infinite sequence of prefixes that are standard. Nevertheless in any characteristic word c, some standard words occur that are not prefixes of c. We characterize all standard words occurring in any characteristic word (and so in any sturmian word) using firstly morphisms, then standard prefixes and finally palindromes.
@article{ITA_2010__44_1_159_0, author = {Richomme, Gw\'ena\"el and Saari, Kalle and Zamboni, Luca Q.}, title = {Standard factors of sturmian words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {159-174}, doi = {10.1051/ita/2010011}, mrnumber = {2604941}, zbl = {1184.68378}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_1_159_0} }
Richomme, Gwénaël; Saari, Kalle; Zamboni, Luca Q. Standard factors of sturmian words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 159-174. doi : 10.1051/ita/2010011. http://gdmltest.u-ga.fr/item/ITA_2010__44_1_159_0/
[1] Words in number theory, edited by M. Lothaire. Applied Combinatorics on Words, Cambridge University Press (2005) 520-574. | Zbl 1133.68067
and ,[2] Automatic sequences. Cambridge University Press (2003). | Zbl 1086.11015
and ,[3] Balanced sequences and optimal routing. J. ACM 47 (2000) 752-775.
, and ,[4] Sturmian sequences, edited by P. Fogg. Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math. 1794 (2002) 143-198.
,[5] Sturmian and episturmian Words (a survey of some recent results), edited by S. Bozapalidis and G. Rahonis. Conference on algebraic informatics (CAI'07), Lect. Notes Comput. Sci. 4728 (2007) 23-47. | Zbl 1149.68065
,[6] Sturmian words. Lyndon words and trees. Theoret. Comput. Sci. 178 (1997) 171-203. | Zbl 0901.68155
and ,[7] Sturmian words, edited by M. Lothaire. Algebraic combinatorics on words, Cambridge University Press (2002) 45-110.
and ,[8] Combinatorics on words: Christoffel words and repetition in words. CRM Monograph Series, Vol. 27, CRM-AMS Montréal (2008). | Zbl 1161.68043
, , and ,[9] Initial powers of Sturmian sequences. Acta Inform. 122 (2006) 315-347. | Zbl 1117.37005
, and ,[10] Which distributions of matter diffract? An initial investigation. J. Phys. 47 (1986) 19-28. | Zbl 0693.52002
and ,[11] On extremal properties of the Fibonacci word. RAIRO-Theor. Inf. Appl. 42 (2008) 701-715. | Numdam | Zbl 1155.68062
,[12] Combinatorics of words, edited by G. Rozenberg and A. Salomaa. Handbook of Formal Languages 1, Springer (1997).
and ,[13] W.-f. Chuan, Unbordered factors of the characteristic sequences of irrational numbers. Theoret. Comput. Sci. 205 (1998) 337-344. | Zbl 0913.68119
[14] Least periods of factors of infinite words. RAIRO-Theor. Inf. Appl. 43 (2009) 165-178. | Numdam | Zbl 1162.68510
and ,[15] Sturmian words: structure, combinatorics, and their arithmetics. Theoret. Comput. Sci. 183 (1997) 45-82. | Zbl 0911.68098
,[16] Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | Zbl 0981.68126
, and ,[17] Episturmian words: a survey. RAIRO-Theor. Inf. Appl. 43 (2009) 403-442. | Zbl 1182.68155
and ,[18] Directive words of episturmian words: equivalence and normalization. RAIRO-Theor. Inf. Appl. 43 (2009) 299-319. | Numdam | Zbl 1166.68034
, and ,[19] Minimal Duval Extensions. Int. J. Found. Comput. Sci. 15 (2004) 349-354. | Zbl 1067.68112
and ,[20] Digital straightness - a review. Discrete Appl. Math. 139 (2004) 197-230. | Zbl 1093.68656
and ,[21] Algebraic Combinatorics on Words. Cambridge University Press (2002). | Zbl pre05869531
,[22] Lyndon factorization of Sturmian words. Discrete Math. 210 (2000) 137-149. | Zbl 0946.68113
,[23] A note on a conjecture of Duval and Sturmian words. RAIRO-Theor. Inf. Appl. 36 (2002) 1-3. | Numdam | Zbl 1013.68152
and ,[24] Symbolic dynamics. Amer. J. Math. 60 (1938) 815-866. | JFM 64.0798.04
and ,[25] Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03
and ,[26] Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words. Theoret. Comput. Sci. 380 (2007) 393-400. | Zbl 1118.68111
,[27] Everywhere α-repetitive sequences and Sturmian words, in Proc. CSR 2007. Lect. Notes Comput. Sci. 4649 (2007) 363-372. | Zbl 1188.68218
,[28] On the frequency and periodicity of infinite words. Ph.D. Thesis, University of Turku, TUCS Dissertations 97 (2008).
,