We show that there are three types of infinite words over the two-letter alphabet {0,1} that avoid the pattern AABBCABBA. These types, P, E0, and E1, differ by the factor complexity and the asymptotic frequency of the letter 0. Type P has polynomial factor complexity and letter frequency . Type E0 has exponential factor complexity and the frequency of the letter 0 is at least 0.45622 and at most 0.48684. Type E1 is obtained from type E0 by exchanging 0 and 1.
@article{ITA_2010__44_1_151_0, author = {Ochem, Pascal}, title = {Binary words avoiding the pattern AABBCABBA}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {44}, year = {2010}, pages = {151-158}, doi = {10.1051/ita/2010010}, mrnumber = {2604940}, zbl = {1184.68377}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2010__44_1_151_0} }
Ochem, Pascal. Binary words avoiding the pattern AABBCABBA. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 151-158. doi : 10.1051/ita/2010010. http://gdmltest.u-ga.fr/item/ITA_2010__44_1_151_0/
[1] Growth problems for avoidable words. Theoret. Comput. Sci. 69 (1989) 319-345. | Zbl 0693.68039
, and ,[2] Axel Thue's papers on repetitions in words: a translation. Publications du LaCIM, Département de mathématiques et d'informatique 95, Université du Québec à Montréal (1995). http://www-igm.univ-mlv.fr/ berstel/Articles/1994ThueTranslation.pdf
,[3] Growth of repetition-free words - a review. Theoret. Comput. Sci. 340 (2005) 280-290. | Zbl 1078.68112
,[4] Motifs évitables et régularité dans les mots. Thèse de Doctorat, Université Paris VI (1994).
,[5] Avoidable formulas in combinatorics on words. Ph.D. thesis, University of California, Los Angeles (2001).
,[6] Efficient lower bounds on the number of repetition-free words. J. Integer Sequences 10 (2007) Article 07.3.2. | Zbl 1118.05003
,[7] A generator of morphisms for infinite words. RAIRO-Theor. Inf. Appl. 40 (2006) 427-441. | Numdam | Zbl 1110.68122
,[8] Letter frequency in infinite repetition-free words. Theoret. Comput. Sci. 380 (2007) 388-392. | Zbl 1115.68124
,[9] Upper bound on the number of ternary square-free words, Proceedings of the Workshop on Words and Automata (WOWA'06) (St Petersburg, June 2006). http://www.lri.fr/ ochem/morphisms/wowa.ps
and ,[10] Combinatorial complexity of regular languages. CSR 2008. Lect. Notes Comput. Sci. 5010 (2008) 289-301. | Zbl 1142.68428
,[11] Blocking sets of terms. Math. USSR Sbornik 47 (1984) 353-364. English translation. | Zbl 0599.20106
,