On the number of squares in partial words
Halava, Vesa ; Harju, Tero ; Kärki, Tomi
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010), p. 125-138 / Harvested from Numdam

The theorem of Fraenkel and Simpson states that the maximum number of distinct squares that a word w of length n can contain is less than 2n. This is based on the fact that no more than two squares can have their last occurrences starting at the same position. In this paper we show that the maximum number of the last occurrences of squares per position in a partial word containing one hole is 2k, where k is the size of the alphabet. Moreover, we prove that the number of distinct squares in a partial word with one hole and of length n is less than 4n, regardless of the size of the alphabet. For binary partial words, this upper bound can be reduced to 3n.

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/ita/2010008
Classification:  68R15
@article{ITA_2010__44_1_125_0,
     author = {Halava, Vesa and Harju, Tero and K\"arki, Tomi},
     title = {On the number of squares in partial words},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {44},
     year = {2010},
     pages = {125-138},
     doi = {10.1051/ita/2010008},
     mrnumber = {2604938},
     zbl = {1184.68372},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2010__44_1_125_0}
}
Halava, Vesa; Harju, Tero; Kärki, Tomi. On the number of squares in partial words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) pp. 125-138. doi : 10.1051/ita/2010008. http://gdmltest.u-ga.fr/item/ITA_2010__44_1_125_0/

[1] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications: Proceedings of SETA'98, edited by C. Ding, T. Helleseth and H. Niederreiter. Springer, London (1999) 1-16. | Zbl 1005.11005

[2] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999) 135-141. | Zbl 0916.68120

[3] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2007). | Zbl 1180.68205

[4] F. Blanchet-Sadri, R. Mercaş and G. Scott, Counting distinct squares in partial words, in Proceedings of the 12th International Conference on Automata and Formal Languages (AFL 2008), edited by E. Csuhaj-Varjú and Z. Ésik. Balatonfüred, Hungary (2008) 122-133. Also available at http://www.uncg.edu/cmp/research/freeness/distinctsquares.pdf | Zbl 1199.68199

[5] M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching. Algorithmica 13 (1995) 405-425. | Zbl 0849.68044

[6] A.S. Fraenkel and J. Simpson, How many squares can a string contain? J. Combin. Theory Ser. A 82 (1998) 112-120. | Zbl 0910.05001

[7] V. Halava, T. Harju, T. Kärki and P. Séébold, Overlap-freeness in infinite partial words. Theoret. Comput. Sci. 410 (2009) 943-948. | Zbl 1165.68058

[8] V. Halava, T. Harju and T. Kärki, Square-free partial words. Inform. Process. Lett. 108 (2008) 290-292. | Zbl 1191.68385

[9] L. Ilie, A simple proof that a word of length n has at most 2n distinct squares. J. Combin. Theory Ser. A 112 (2005) 163-164. | Zbl 1088.68146

[10] L. Ilie, A note on the number of squares in a word. Theoret. Comput. Sci. 380 (2007) 373-376. | Zbl 1119.68141

[11] M. Lothaire, Combinatorics on Words. Encyclopedia of Mathematics 17, Addison-Wesley (1983). | Zbl 0514.20045

[12] M. Lothaire, Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications 90, Cambridge University Press (2002). | Zbl 1001.68093

[13] F. Manea and R. Mercaş, Freeness of partial words. Theoret. Comput. Sci. 389 (2007) 265-277. | Zbl 1154.68457

[14] A. Thue, Über unendliche Zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 7 (1906) 1-22. | JFM 39.0283.01

[15] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 1 (1912) 1-67. | JFM 44.0462.01